Complex-1 activity and 18F-DOPA uptake in genetically engineered mouse model of Parkinson's disease and the neuroprotective role of coenzyme Q10

2006 ◽  
Vol 70 (1) ◽  
pp. 22-32 ◽  
Author(s):  
Sushil K. Sharma ◽  
Hesham El ReFaey ◽  
Manuchair Ebadi
2019 ◽  
Vol 20 (14) ◽  
pp. 3407 ◽  
Author(s):  
Paola Imbriani ◽  
Annalisa Tassone ◽  
Maria Meringolo ◽  
Giulia Ponterio ◽  
Graziella Madeo ◽  
...  

Caspases are a family of conserved cysteine proteases that play key roles in multiple cellular processes, including programmed cell death and inflammation. Recent evidence shows that caspases are also involved in crucial non-apoptotic functions, such as dendrite development, axon pruning, and synaptic plasticity mechanisms underlying learning and memory processes. The activated form of caspase-3, which is known to trigger widespread damage and degeneration, can also modulate synaptic function in the adult brain. Thus, in the present study, we tested the hypothesis that caspase-3 modulates synaptic plasticity at corticostriatal synapses in the phosphatase and tensin homolog (PTEN) induced kinase 1 (PINK1) mouse model of Parkinson’s disease (PD). Loss of PINK1 has been previously associated with an impairment of corticostriatal long-term depression (LTD), rescued by amphetamine-induced dopamine release. Here, we show that caspase-3 activity, measured after LTD induction, is significantly decreased in the PINK1 knockout model compared with wild-type mice. Accordingly, pretreatment of striatal slices with the caspase-3 activator α-(Trichloromethyl)-4-pyridineethanol (PETCM) rescues a physiological LTD in PINK1 knockout mice. Furthermore, the inhibition of caspase-3 prevents the amphetamine-induced rescue of LTD in the same model. Our data support a hormesis-based double role of caspase-3; when massively activated, it induces apoptosis, while at lower level of activation, it modulates physiological phenomena, like the expression of corticostriatal LTD. Exploring the non-apoptotic activation of caspase-3 may contribute to clarify the mechanisms involved in synaptic failure in PD, as well as in view of new potential pharmacological targets.


2018 ◽  
Vol 279 ◽  
pp. 111-120 ◽  
Author(s):  
André T.R. Goes ◽  
Cristiano R. Jesse ◽  
Michelle S. Antunes ◽  
Fernando V. Lobo Ladd ◽  
Aliny A.B. Lobo Ladd ◽  
...  

Antioxidants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 597 ◽  
Author(s):  
Kuo-Hsuan Chang ◽  
Chiung-Mei Chen

Parkinson’s disease (PD) is caused by progressive neurodegeneration of dopaminergic (DAergic) neurons with abnormal accumulation of α-synuclein in substantia nigra (SN). Studies have suggested the potential involvement of dopamine, iron, calcium, mitochondria and neuroinflammation in contributing to overwhelmed oxidative stress and neurodegeneration in PD. Function studies on PD-causative mutations of SNCA, PRKN, PINK1, DJ-1, LRRK2, FBXO7 and ATP13A2 further indicate the role of oxidative stress in the pathogenesis of PD. Therefore, it is reasonable that molecules involved in oxidative stress, such as DJ-1, coenzyme Q10, uric acid, 8-hydroxy-2’-deoxyguanosin, homocysteine, retinoic acid/carotenes, vitamin E, glutathione peroxidase, superoxide dismutase, xanthine oxidase and products of lipid peroxidation, could be candidate biomarkers for PD. Applications of antioxidants to modulate oxidative stress could be a strategy in treating PD. Although a number of antioxidants, such as creatine, vitamin E, coenzyme Q10, pioglitazone, melatonin and desferrioxamine, have been tested in clinical trials, none of them have demonstrated conclusive evidence to ameliorate the neurodegeneration in PD patients. Difficulties in clinical studies may be caused by the long-standing progression of neurodegeneration, lack of biomarkers for premotor stage of PD and inadequate drug delivery across blood–brain barrier. Solutions for these challenges will be warranted for future studies with novel antioxidative treatment in PD patients.


Glia ◽  
2015 ◽  
Vol 64 (3) ◽  
pp. 386-395 ◽  
Author(s):  
Heather L. Martin ◽  
Matteo Santoro ◽  
Sarah Mustafa ◽  
Gernot Riedel ◽  
John V. Forrester ◽  
...  

Health ◽  
2012 ◽  
Vol 04 (11) ◽  
pp. 1178-1190 ◽  
Author(s):  
Aaron Kucinski ◽  
Scott Wersinger ◽  
Ewa K. Stachowiak ◽  
Milen Radell ◽  
Renae Hesse ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-25 ◽  
Author(s):  
Mustafa Varçin ◽  
Eduard Bentea ◽  
Yvette Michotte ◽  
Sophie Sarre

There is extensive evidence in Parkinson’s disease of a link between oxidative stress and some of the monogenically inherited Parkinson’s disease-associated genes. This paper focuses on the importance of this link and potential impact on neuronal function. Basic mechanisms of oxidative stress, the cellular antioxidant machinery, and the main sources of cellular oxidative stress are reviewed. Moreover, attention is given to the complex interaction between oxidative stress and other prominent pathogenic pathways in Parkinson’s disease, such as mitochondrial dysfunction and neuroinflammation. Furthermore, an overview of the existing genetic mouse models of Parkinson’s disease is given and the evidence of oxidative stress in these models highlighted. Taken into consideration the importance of ageing and environmental factors as a risk for developing Parkinson’s disease, gene-environment interactions in genetically engineered mouse models of Parkinson’s disease are also discussed, highlighting the role of oxidative damage in the interplay between genetic makeup, environmental stress, and ageing in Parkinson’s disease.


2004 ◽  
Vol 190 (2) ◽  
pp. 506-514 ◽  
Author(s):  
Cathy W. Levenson ◽  
Roy G. Cutler ◽  
Bruce Ladenheim ◽  
Jean L. Cadet ◽  
Joan Hare ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document