High fatty acids modulate P2X7 expression and IL-6 release via the p38 MAPK pathway in PC12 cells

2013 ◽  
Vol 94 ◽  
pp. 63-70 ◽  
Author(s):  
Hong Xu ◽  
Bing Wu ◽  
Fuqing Jiang ◽  
Shaoheng Xiong ◽  
Baoping Zhang ◽  
...  
Inflammation ◽  
2014 ◽  
Vol 38 (1) ◽  
pp. 327-337 ◽  
Author(s):  
Hong Xu ◽  
Chaopeng Xiong ◽  
Luling He ◽  
Bing Wu ◽  
Lulu Peng ◽  
...  

2011 ◽  
Vol 440 (2) ◽  
pp. 273-282 ◽  
Author(s):  
Hengxiang Cui ◽  
Chenghao Shao ◽  
Qin Liu ◽  
Wenjie Yu ◽  
Jianping Fang ◽  
...  

Heparanase is involved in the cleavage of the HS (heparan sulfate) chain of HSPGs (HS proteoglycans) and hence participates in remodelling of the ECM (extracellular matrix) and BM (basement membrane). In the present study we have shown that NGF (nerve growth factor) promoted nuclear enrichment of EGR1 (early growth response 1), a transcription factor for heparanase, and markedly induced heparanase expression in rat adrenal pheochromocytoma (PC12) cells. K252a, an antagonist of the NGF receptor TrkA (tyrosine kinase receptor A), decreased heparanase protein expression induced by NGF in PC12 cells. Suramin, a heparanase inhibitor, decreased heparanase in PC12 cells and blocked NGF-induced PC12 neuritogenesis. Stable overexpression of heparanase activated p38 MAPK (mitogen-activated protein kinase) by phosphorylation and enhanced the neurite outgrowth induced by NGF, whereas knock down of heparanase impaired this process. However, overexpression of latent pro-heparanase with a Y156A mutation still led to enhanced NGF-induced neurite outgrowth and increased p38 MAPK phosphorylation. Inhibition of p38 MAPK by SB203580 suppressed the promotion of NGF-induced neuritogenesis by the wild-type and mutant heparanase. The impaired differentiation by knock down of heparanase could be restored by transfection of wild-type or mutant heparanase in PC12 cells. The results of the present study suggest that heparanase, at least in the non-enzymatic form, may promote NGF-induced neuritogenesis via the p38 MAPK pathway.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Manish Chamoli ◽  
Anita Goyala ◽  
Syed Shamsh Tabrez ◽  
Atif Ahmed Siddiqui ◽  
Anupama Singh ◽  
...  

Abstract The metabolic state of an organism instructs gene expression modalities, leading to changes in complex life history traits, such as longevity. Dietary restriction (DR), which positively affects health and life span across species, leads to metabolic reprogramming that enhances utilisation of fatty acids for energy generation. One direct consequence of this metabolic shift is the upregulation of cytoprotective (CyTP) genes categorized in the Gene Ontology (GO) term of “Xenobiotic Detoxification Program” (XDP). How an organism senses metabolic changes during nutritional stress to alter gene expression programs is less known. Here, using a genetic model of DR, we show that the levels of polyunsaturated fatty acids (PUFAs), especially linoleic acid (LA) and eicosapentaenoic acid (EPA), are increased following DR and these PUFAs are able to activate the CyTP genes. This activation of CyTP genes is mediated by the conserved p38 mitogen-activated protein kinase (p38-MAPK) pathway. Consequently, genes of the PUFA biosynthesis and p38-MAPK pathway are required for multiple paradigms of DR-mediated longevity, suggesting conservation of mechanism. Thus, our study shows that PUFAs and p38-MAPK pathway function downstream of DR to help communicate the metabolic state of an organism to regulate expression of CyTP genes, ensuring extended life span.


2008 ◽  
Vol 56 (1) ◽  
pp. 83-89 ◽  
Author(s):  
Ewa Jablonska ◽  
Wioletta Ratajczak ◽  
Jakub Jablonski

Author(s):  
Lingfan Xiong ◽  
Wenhao Guo ◽  
Yong Yang ◽  
Danping Gao ◽  
Jun Wang ◽  
...  

Phytomedicine ◽  
2014 ◽  
Vol 21 (12) ◽  
pp. 1746-1752 ◽  
Author(s):  
Ming-Ju Hsieh ◽  
Su-Yu Chien ◽  
Ying-Erh Chou ◽  
Chih-Jung Chen ◽  
Judy Chen ◽  
...  

2011 ◽  
Vol 300 (2) ◽  
pp. C375-C382 ◽  
Author(s):  
Chunhui Wang ◽  
Hua Xu ◽  
Huacong Chen ◽  
Jing Li ◽  
Bo Zhang ◽  
...  

Diarrhea is a common manifestation of gastrointestinal disorders. Diarrhea-induced losses of fluid and electrolyte could lead to dehydration and electrolyte imbalances, resulting in significant morbidity and mortality, especially in children living in developing countries. Somatostatin, a peptide hormone secreted by D-cells, plays an important role in regulating motility and intestinal Na+ absorption. Although octreotide, a somatostatin analog, is used to treat diarrhea, its mechanisms of action are unclear. Here we showed that octreotide increased brush-border membrane Na+/H+ exchanger 8 (NHE8) expression in the small intestine to the exclusion of other NHEs that participate in Na+ absorption. The same effect also occurred in human intestinal cells (Caco-2). We found that the increase of NHE8 expression by somatostatin required p38 mitogen-activated protein kinase (MAPK) activation. Furthermore, the somatostatin receptor SSTR2 antagonist CYN154806 could abolish somatostatin-induced NHE8 expression and p38 MAPK phosphorylation. Thus our data provided the first concrete evidence indicating that somatostatin stimulates intestinal Na+ absorption by increasing intestinal NHE8 expression through the SSTR2-p38 MAPK pathway.


Sign in / Sign up

Export Citation Format

Share Document