Inhibiting nuclear factor-κB at different stages after intracerebral hemorrhage can influence the hemorrhage-induced brain injury in experimental models in vivo

2020 ◽  
Vol 155 ◽  
pp. 159-165
Author(s):  
Zeli Zhang ◽  
Yan Song ◽  
Feng Li ◽  
Zhenkuan Xu ◽  
Qibing Huang
2019 ◽  
Vol 8 (12) ◽  
pp. 2091 ◽  
Author(s):  
Stuart B. Goodman ◽  
Jiri Gallo

Clinical studies, as well as in vitro and in vivo experiments have demonstrated that byproducts from joint replacements induce an inflammatory reaction that can result in periprosthetic osteolysis (PPOL) and aseptic loosening (AL). Particle-stimulated macrophages and other cells release cytokines, chemokines, and other pro-inflammatory substances that perpetuate chronic inflammation, induce osteoclastic bone resorption and suppress bone formation. Differentiation, maturation, activation, and survival of osteoclasts at the bone–implant interface are under the control of the receptor activator of nuclear factor kappa-Β ligand (RANKL)-dependent pathways, and the transcription factors like nuclear factor κB (NF-κB) and activator protein-1 (AP-1). Mechanical factors such as prosthetic micromotion and oscillations in fluid pressures also contribute to PPOL. The treatment for progressive PPOL is only surgical. In order to mitigate ongoing loss of host bone, a number of non-operative approaches have been proposed. However, except for the use of bisphosphonates in selected cases, none are evidence based. To date, the most successful and effective approach to preventing PPOL is usage of wear-resistant bearing couples in combination with advanced implant designs, reducing the load of metallic and polymer particles. These innovations have significantly decreased the revision rate due to AL and PPOL in the last decade.


2006 ◽  
Vol 69 (6) ◽  
pp. 2027-2036 ◽  
Author(s):  
Tamás Letoha ◽  
Erzsébet Kusz ◽  
Gábor Pápai ◽  
Annamária Szabolcs ◽  
József Kaszaki ◽  
...  

2022 ◽  
Author(s):  
Zhuo-yue Song ◽  
Mengru Zhu ◽  
Jun Wu ◽  
Tian Yu ◽  
Yao Chen ◽  
...  

The effects of Cucumaria frondosa polysaccharides (CFP) on renal interstitial fibrosis via regulating phosphatidylinositol-3-hydroxykinase/protein kinase-B/Nuclear factor-κB (PI3K/AKT/NF-κB) signaling pathway were investigated in vivo and in vitro in this research. A...


2015 ◽  
Vol 29 (4) ◽  
pp. 528-541 ◽  
Author(s):  
Jiali Liu ◽  
Huixia Li ◽  
Bo Zhou ◽  
Lin Xu ◽  
Xiaomin Kang ◽  
...  

Abstract Progranulin (PGRN) has recently emerged as an important regulator for glucose metabolism and insulin sensitivity. However, the underlying mechanisms of PGRN in the regulation of insulin sensitivity and autophagy remain elusive. In this study, we aimed to address the direct effects of PGRN in vivo and to evaluate the potential interaction of impaired insulin sensitivity and autophagic disorders in hepatic insulin resistance. We found that mice treated with PGRN for 21 days exhibited the impaired glucose tolerance and insulin tolerance and hepatic autophagy imbalance as well as defective insulin signaling. Furthermore, treatment of mice with TNF receptor (TNFR)-1 blocking peptide-Fc, a TNFR1 blocking peptide-Fc fusion protein to competitively block the interaction of PGRN and TNFR1, resulted in the restoration of systemic insulin sensitivity and the recovery of autophagy and insulin signaling in liver. Consistent with these findings in vivo, we also observed that PGRN treatment induced defective autophagy and impaired insulin signaling in hepatocytes, with such effects being drastically nullified by the addition of TNFR1 blocking peptide -Fc or TNFR1-small interference RNA via the TNFR1-nuclear factor-κB-dependent manner, indicating the causative role of PGRN in hepatic insulin resistance. In conclusion, our findings supported the notion that PGRN is a key regulator of hepatic insulin resistance and that PGRN may mediate its effects, at least in part, by inducing defective autophagy via TNFR1/nuclear factor-κB.


2014 ◽  
Vol 28 (12) ◽  
pp. 2025-2037 ◽  
Author(s):  
Sandra L. Grimm ◽  
Robert D. Ward ◽  
Alison E. Obr ◽  
Heather L. Franco ◽  
Rodrigo Fernandez-Valdivia ◽  
...  

Progesterone receptors (PRs) are phosphorylated on multiple sites, and a variety of roles for phosphorylation have been suggested by cell-based studies. Previous studies using PR-null mice have shown that PR plays an important role in female fertility, regulation of uterine growth, the uterine decidualization response, and proliferation as well as ductal side-branching and alveologenesis in the mammary gland. To study the role of PR phosphorylation in vivo, a mouse was engineered with homozygous replacement of PR with a PR serine-to-alanine mutation at amino acid 191. No overt phenotypes were observed in the mammary glands or uteri of PR S191A treated with progesterone (P4). In contrast, although PR S191A mice were fertile, litters were 19% smaller than wild type and the estrous cycle was lengthened slightly. Moreover, P4-dependent gene regulation in primary mammary epithelial cells (MECs) was altered in a gene-selective manner. MECs derived from wild type and PR S191A mice were grown in a three-dimensional culture. Both formed acinar structures that were morphologically similar, and proliferation was stimulated equally by P4. However, P4 induction of receptor activator of nuclear factor-κB ligand and calcitonin was selectively reduced in S191A cultures. These differences were confirmed in freshly isolated MECs. Chromatin immunoprecipitation analysis showed that the binding of S191A PR to some of the receptor activator of nuclear factor-κB ligand enhancers and a calcitonin enhancer was substantially reduced. Thus, the elimination of a single phosphorylation site is sufficient to modulate PR activity in vivo. PR contains many phosphorylation sites, and the coordinate regulation of multiple sites is a potential mechanism for selective modulation of PR function.


Sign in / Sign up

Export Citation Format

Share Document