Effects of wind direction and building array arrangement on airflow and contaminant distributions in the central space of buildings

2021 ◽  
pp. 108234
Author(s):  
Kai Yip Lee ◽  
Cheuk Ming Mak
Atmosphere ◽  
1968 ◽  
Vol 6 (2) ◽  
pp. 23-38 ◽  
Author(s):  
Richmond W. Longley

2008 ◽  
Vol 400-402 ◽  
pp. 935-940 ◽  
Author(s):  
Ying Ge Wang ◽  
Zheng Nong Li ◽  
Bo Gong ◽  
Qiu Sheng Li

Heliostat is the key part of Solar Tower power station, which requires extremely high accuracy in use. But it’s sensitive to gust because of its light structure, so effect of wind load should be taken into account in design. Since structure of heliostat is unusual and different from common ones, experimental investigation on rigid heliostat model using technology of surface pressure mensuration to test 3-dimensional wind loads in wind tunnel was conducted. The paper illustrates distribution and characteristics of reflector’s mean and fluctuating wind pressure while wind direction angle varied from 0° to 180° and vertical angle varied from 0° to 90°. Moreover, a finite element model was constructed to perform calculation on wind-induced dynamic response. The results show that the wind load power spectral change rulers are influenced by longitudinal wind turbulence and vortex and are related with Strouhal number; the fluctuating wind pressures between face and back mainly appear positive correlation, and the correlation coefficients at longitudinal wind direction are smaller than those at lateral direction; the fluctuating wind pressures preferably agree with Gaussian distribution at smaller vertical angle and wind direction angle. The wind-induced response and its spectrums reveal that: when vertical angle is small, the background responsive values of reflector’s different parts are approximately similar; in addition, multi-phased resonant response occurring at the bottom. With the increase of , airflow separates at the near side and reunites at the other, as produces vortex which enhances dynamic response at the upper part.


2021 ◽  
Vol 13 (5) ◽  
pp. 935
Author(s):  
Matthew Varnam ◽  
Mike Burton ◽  
Ben Esse ◽  
Giuseppe Salerno ◽  
Ryunosuke Kazahaya ◽  
...  

SO2 cameras are able to measure rapid changes in volcanic emission rate but require accurate calibrations and corrections to convert optical depth images into slant column densities. We conducted a test at Masaya volcano of two SO2 camera calibration approaches, calibration cells and co-located spectrometer, and corrected both calibrations for light dilution, a process caused by light scattering between the plume and camera. We demonstrate an advancement on the image-based correction that allows the retrieval of the scattering efficiency across a 2D area of an SO2 camera image. When appropriately corrected for the dilution, we show that our two calibration approaches produce final calculated emission rates that agree with simultaneously measured traverse flux data and each other but highlight that the observed distribution of gas within the image is different. We demonstrate that traverses and SO2 camera techniques, when used together, generate better plume speed estimates for traverses and improved knowledge of wind direction for the camera, producing more reliable emission rates. We suggest combining traverses and the SO2 camera should be adopted where possible.


2021 ◽  
pp. 103910
Author(s):  
Joaquin P. Moris ◽  
Andrew B. Kennedy ◽  
Joannes J. Westerink

Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 292 ◽  
Author(s):  
Ana Oliveira ◽  
António Lopes ◽  
Ezequiel Correia ◽  
Samuel Niza ◽  
Amílcar Soares

Lisbon is a European Mediterranean city, greatly exposed to heatwaves (HW), according to recent trends and climate change prospects. Considering the Atlantic influence, air temperature observations from Lisbon’s mesoscale network are used to investigate the interactions between background weather and the urban thermal signal (UTS) in summer. Days are classified according to the prevailing regional wind direction, and hourly UTS is compared between HW and non-HW conditions. Northern-wind days predominate, revealing greater maximum air temperatures (up to 40 °C) and greater thermal amplitudes (approximately 10 °C), and account for 37 out of 49 HW days; southern-wind days have milder temperatures, and no HWs occur. Results show that the wind direction groups are significantly different. While southern-wind days have minor UTS variations, northern-wind days have a consistent UTS daily cycle: a diurnal urban cooling island (UCI) (often lower than –1.0 °C), a late afternoon peak urban heat island (UHI) (occasionally surpassing 4.0 °C), and a stable nocturnal UHI (1.5 °C median intensity). UHI/UCI intensities are not significantly different between HW and non-HW conditions, although the synoptic influence is noted. Results indicate that, in Lisbon, the UHI intensity does not increase during HW events, although it is significantly affected by wind. As such, local climate change adaptation strategies must be based on scenarios that account for the synergies between potential changes in regional air temperature and wind.


2020 ◽  
Vol 1452 ◽  
pp. 012012 ◽  
Author(s):  
Eric Simley ◽  
Paul Fleming ◽  
Jennifer King

Sign in / Sign up

Export Citation Format

Share Document