Interdiffusion behaviors and mechanical properties of Zn–Cr system

Calphad ◽  
2021 ◽  
Vol 74 ◽  
pp. 102308
Author(s):  
Rongjie Zhuang ◽  
Yongkang Tan ◽  
Ya Liu ◽  
Xiaoma Tao ◽  
Hongmei Chen ◽  
...  
Author(s):  
Andrea Gruttadauria ◽  
Silvia Barella ◽  
Claudia Fiocchi

Abstract The Ni–Fe–Cr system is the basis of a series of commercial alloys featuring chemical–physical characteristics that allow them to be used in a variety of fields where excellent resistance to aggressive environments is required. In this scenario, the CU5MCuC alloy, the foundry counterpart of Alloy 825, is proving successful in the petrochemical field thanks to its good corrosion resistance in acidic and highly oxidizing environments. Intergranular corrosion resistance, critical for this material, is ensured by the stabilization treatment that allows precipitation of Nb carbides. Strengthening of this alloy takes place only via a solid solution. Therefore, its mechanical properties depend on the solution annealing treatment: often this treatment alone does not make it possible to reach the UTS imposed by the ASTM-A494 standard. In this work, the possibility of using stabilization treatment to increase mechanical strength as well was considered. Treatments, with different combinations of time and temperature, were carried out in order to modify the material’s microstructure. After the thermal treatments, microstructural analyses, mechanical tests and (pitting and intergranular) corrosion and resistance tests were carried out to identify optimal treatment parameters in order to promote the evolution of microstructural constituents capable of improving mechanical strength without decreasing corrosion resistance. The treatment that achieves the best compromise between mechanical properties and corrosion resistance is stabilization at 970 °C for 4 h.


2010 ◽  
Vol 654-656 ◽  
pp. 2114-2117 ◽  
Author(s):  
Yonosuke Murayama ◽  
Shuichi Sasaki ◽  
Hisamichi Kimura ◽  
Akihiko Chiba

This work investigates the mechanical properties of Ti-Cr system alloys and focuses on the microstructure, the Young’s modulus, the deformation mechanism and the deformation behaviour observed in various alloy compositions. The addition of Al to the Ti-Cr system alloys greatly decreases the Young’s modulus. Addition of Al, Sn and Zr to various Ti-Cr alloys suppresses the athermal ω phase that forms during quenching from β field. A Ti-Cr system alloy with low Young’s modulus was obtained in suitable compositional combination of Cr, Zr and Sn or Al. The alloys with the composition where the quenched microstructure transits from martensite to meta-stable β phase show low Young’s modulus. In addition, the alloys show two-step yielding due to stress-induced transformation.


2020 ◽  
Vol 1003 ◽  
pp. 60-66
Author(s):  
Yi Qin Cai ◽  
Zhuang Li ◽  
Run Qi Zhang ◽  
Jin Yu Li ◽  
Hao Xu Wang ◽  
...  

In this regard, two beta titanium alloys in the Ti-Al-Mo-V-Cr system, Ti-3Al-5Mo-7V-3Cr (Ti-3573) and Ti-3Al-8Mo-7V-3Cr (Ti-3873), have been designed. Comparison of the microstructure and mechanical properties of both alloys after solution treatment was conducted. The result shows that the β grains in Ti-3873 alloy are abnormally grown at WQ. The elongation of Ti-3573 alloy is higher than that of Ti-3873 alloy, it is related to the the smaller grain size. The Ti-3873 alloy has moderate plasticity but higher yield strength and tensile strength. Fine and deep dimples associated with ductile fracture were obtained for the Ti-3573 alloy. The fractography of the β-substrate specimens showed that the fracture mode was ductile fracture. The Ti-3873 alloy has a combination of slip and twinning during deformation. It is possible for the Ti-3573 alloy to undergo both twinning and TRIP effect upon deformation. Therefore, Ti-3573 alloy exhibited good plasticity and strength matching.


2007 ◽  
Vol 43 (3) ◽  
pp. 813-819 ◽  
Author(s):  
Chihiro Watanabe ◽  
Ryoichi Monzen ◽  
Kazue Tazaki

1974 ◽  
Vol 16 (9) ◽  
pp. 769-773
Author(s):  
S. S. Ushkov ◽  
L. A. Ivanova

Sign in / Sign up

Export Citation Format

Share Document