Highly oriented growth of n-type ZnO films on p-type single crystalline diamond films and fabrication of high-quality transparent ZnO/diamond heterojunction

Carbon ◽  
2004 ◽  
Vol 42 (2) ◽  
pp. 317-321 ◽  
Author(s):  
C.X. Wang ◽  
G.W. Yang ◽  
C.X. Gao ◽  
H.W. Liu ◽  
Y.H. Han ◽  
...  
2016 ◽  
Vol 100 ◽  
pp. 468-473 ◽  
Author(s):  
Zhiyuan Zhang ◽  
Jingyun Huang ◽  
Shanshan Chen ◽  
Xinhua Pan ◽  
Lingxiang Chen ◽  
...  

2004 ◽  
Vol 13 (4-8) ◽  
pp. 858-862 ◽  
Author(s):  
Tokuyuki Teraji ◽  
Satoshi Yoshizaki ◽  
Hideki Wada ◽  
Mitsuhiro Hamada ◽  
Toshimichi Ito

2017 ◽  
Vol 28 (21) ◽  
pp. 16215-16219 ◽  
Author(s):  
Zhiyuan Zhang ◽  
Jingyun Huang ◽  
Shanshan Chen ◽  
Xinhua Pan ◽  
Lingxiang Chen ◽  
...  

2015 ◽  
Vol 734 ◽  
pp. 796-801 ◽  
Author(s):  
Ting Ting Wang ◽  
Miao Miao Dai ◽  
Ya Jun Yan ◽  
Hong Zhang ◽  
Yi Min Yu

A series of Li-doped zinc oxide ( ZnO ) thin films were deposited on quartz glass by sol-gel and spin coating method. Their p-type conductivities could be achieved by subsequently thermal annealing process, which were characterized by Hall effect measurement. An optimized result with resistivity of 46.8 Ω cm, Hall mobility of 1.35 cm2/V s, and hole concentration of 9.89×1016 cm-3 was achieved at the annealing temperature of 700 °C. The films exhibited highly (002) oriented growth in all the cases. Strong green emission centered at 510 nm was observed by photoluminescence spectra in Li-doped ZnO films at room temperature.


2018 ◽  
Vol 48 (2) ◽  
pp. 780-786 ◽  
Author(s):  
Zhiyuan Zhang ◽  
Jingyun Huang ◽  
Shanshan Chen ◽  
Xinhua Pan ◽  
Lingxiang Chen ◽  
...  

2010 ◽  
Vol 3 (3) ◽  
pp. 031103 ◽  
Author(s):  
Seunghwan Park ◽  
Tsutomu Minegishi ◽  
Dongcheol Oh ◽  
Hyunjae Lee ◽  
Toshinori Taishi ◽  
...  
Keyword(s):  

2018 ◽  
Vol 483 ◽  
pp. 236-240 ◽  
Author(s):  
Zhiyuan Zhang ◽  
Jingyun Huang ◽  
Shanshan Chen ◽  
Xinhua Pan ◽  
Lingxiang Chen ◽  
...  

2018 ◽  
Vol 90 ◽  
pp. 181-187 ◽  
Author(s):  
Taisuke Kageura ◽  
Masakuni Hideko ◽  
Ikuto Tsuyuzaki ◽  
Shotaro Amano ◽  
Aoi Morishita ◽  
...  

2014 ◽  
Vol 609-610 ◽  
pp. 113-117
Author(s):  
Ya Juan Sun ◽  
Wan Xing Wang

Since ZnO is a wide band gap (3.37 eV) semiconductor with a large exitonic binding energy (60 meV), it has been considered as a candidate for various applications, such as ultraviolet (UV) light emitting diodes and laser diodes. For the applications of ZnO-based optoelectronic devices, it is necessary to produce n and p type ZnO films with the high quality. Since ZnO is naturally n-type semiconductor material due to intrinsic defects, such as oxygen vacancies, zinc interstitials, etc., it is easy to produce n-type ZnO with high quality. However, it is difficult to produce low-resistive and stable p-type ZnO due to its asymmetric doping limitations and the self-compensation effects of the intrinsic defects. According to the theoretical studies, p-type ZnO can be realized using group-V dopants substituting for O, such as N, P and As. Among them, N has been suggested to be an effective acceptor dopant candidate to achieve p-type ZnO, because that nitrogen has a much smaller ionic size than P and As and the energy level of substitutional NOis lower than that of substitutional POand AsO.Transparent p-type ZnO: N thin films have been fabricated using the pulsed laser deposition method at deposition temperatures 800 °C under the O2and N2mixing pressure 6Pa. N-doped ZnO films were deposited on sapphire substrate using metallic zinc (99.999%) as target. The structural, optical and electrical properties of the films were examined by XRD, UV-visit spectra and Hall effect measurement. We found that thin film contain the hexagonal ZnO structure. The Hall effect measurement revealed that the carrier concentration is 5.84×10181/ cm3, and Hall mobility is 0.26 cm2/Vs, electrical resistivity is 4.12ohm-cm. Film thickness is 180nm. Besides, Visible light transmittance is more than 80%, and calculative band-gap is 3.1 eV, which is lower than ZnO.


Sign in / Sign up

Export Citation Format

Share Document