Preparation of carbon fibers grafted to graphene oxide as a reinforcement for epoxy matrix composites

Carbon ◽  
2019 ◽  
Vol 145 ◽  
pp. 774
Author(s):  
Yu-ting Liu ◽  
Ting-ting Yao ◽  
Hong-yan Song ◽  
Gang-ping Wu
2020 ◽  
Vol 40 (5) ◽  
pp. 415-420 ◽  
Author(s):  
Yasin Altin ◽  
Hazal Yilmaz ◽  
Omer Faruk Unsal ◽  
Ayse Celik Bedeloglu

AbstractThe interfacial interaction between the fiber and matrix is the most important factor which influences the performance of the carbon fiber-epoxy composites. In this study, the graphitic surface of the carbon fibers was modified with graphene oxide nanomaterials by using a spray coating technique which is an easy, cheap, and quick method. The carbon fiber-reinforced epoxy matrix composites were prepared by hand layup technique using neat carbon fibers and 0.5, 1 and 2% by weight graphene oxide (GO) modified carbon fibers. As a result of SEM analysis, it was observed that GO particles were homogeneously coated on the surface of the carbon fibers. Furthermore, Young's modulus increased from 35.14 to 43.40 GPa, tensile strength increased from 436 to 672 MPa, and the elongation at break was maintained around 2% even in only 2% GO addition.


2014 ◽  
Vol 1611 ◽  
pp. 153-158
Author(s):  
C. Rodríguez ◽  
M. Hinojosa ◽  
J. Aldaco ◽  
A. Cázares

ABSTRACTIn this work we report the fractographic study of polymer matrix composites specimens reinforced with glass and carbon fibers. Specimens of a polyester matrix composite with 30% of E-glass fibers are prepared and fractured in flexure mode. We also test an epoxy matrix composite with 30% carbon fibers, which is fractured in flexure mode. All specimens are manufactured based on the D790 ASTM standard for bending mode at room temperature. As an exception, the composites with epoxy matrix and reinforced with carbon fiber are cured in an autoclave. The most commonly observed fracture mechanisms are debonding in the interphase, delamination, Chevron lines, microbuckling, river patterns and radial fracture on the fibers.


2018 ◽  
Vol 18 (7) ◽  
pp. 4940-4952 ◽  
Author(s):  
Luo Zhanjun ◽  
Chen Hui ◽  
Wu Jing ◽  
Xia Xiaohong ◽  
Liu Hongbo ◽  
...  

2019 ◽  
Vol 41 (4) ◽  
pp. 655-655
Author(s):  
Muhammad Abdul Basit Muhammad Abdul Basit ◽  
Sybt e anwar Qais Sybt e anwar Qais ◽  
Muhammad Saffee Ullah Malik and Ghufran Ur Rehman Muhammad Saffee Ullah Malik and Ghufran Ur Rehman ◽  
Faizan Siddique Awan Faizan Siddique Awan ◽  
Laraib Alam Khan and Tayyab Subhani Laraib Alam Khan and Tayyab Subhani

Carbon fiber reinforced polymeric matrix composites are enormously used in aerospace and automotive industries due to their enhanced specific properties. However, the area of interlaminar shear properties still needs investigation so as to produce composites with improved through-the-thickness properties. To improve interlaminar shear properties of these composites, acid-functionalized multiwalled carbon nanotubes were deposited on de-sized carbon fibers through electrophoretic deposition. De-sizing of carbon fabric was performed through three different methods: furnace heating, acidic treatment and chloroform usage. As the acid-treatment provided better results than other two techniques, the acid-de-sized carbon fibers were coated with nanotubes and subsequently incorporated in epoxy matrix to prepare a novel class of multiscale composites using vacuum assisted resin transfer molding technique. Nearly 30% rise in the interlaminar shear strength of the composites was obtained which was credited to the coating of nanotubes on the surface of carbon fibers. The increased adhesion between carbon fibers and epoxy matrix due to mechanical interlocking of nanotubes was found to be the possible reason of improved interlaminar shear properties.


Sign in / Sign up

Export Citation Format

Share Document