In-depth characterization of the aggregation state of cellulose nanocrystals through analysis of transmission electron microscopy images

2021 ◽  
Vol 254 ◽  
pp. 117271
Author(s):  
Cristina Campano ◽  
Patricio Lopez-Exposito ◽  
Laura Gonzalez-Aguilera ◽  
Ángeles Blanco ◽  
Carlos Negro
1992 ◽  
Vol 280 ◽  
Author(s):  
R. Dahmani ◽  
L. Salamanca-Riba ◽  
D. P. Beesabathina ◽  
N. V. Nguyen ◽  
D. Chandler-Horowitz ◽  
...  

ABSTRACTThe interface between ZnSe thin films and GaAs substrates is characterized by High Resolution Transmission Electron Microscopy and room temperature Spectroscopic Ellipsometry. The films were grown on (001) GaAs by Molecular Beam Epitaxy. A three-phase model is used in the reduction of the ellipsometric data, from which the presence of a transition layer of Ga2Se3, with a thickness of less than 1 nm, is confirmed. These results corroborate the high resolution transmission electron microscopy images obtained from the same samples.


2001 ◽  
Vol 703 ◽  
Author(s):  
Shirley Turner ◽  
David S. Bright

ABSTRACTFaceting in a polyhedral rutile particle was modeled from transmission electron microscopy images. A double-tilt, rotate transmission electron microscope (TEM) sample holder was used to manipulate the particle. Using this holder, it was possible to align the c axis of the particle along one of the axes of the sample holder. This alignment allowed images to be obtained of the particle in several orientations around its c axis. Comparison of dimensions and angles obtained to those obtained for hypothetical models of the particle gives information about its likely prismatic and pyramidal faceting. This approach to facet modeling is useful for more complete determination of the faceting in individual euhedral particles using transmission electron microscopy.


Author(s):  
George Guthrie ◽  
David Veblen

The nature of a geologic fluid can often be inferred from fluid-filled cavities (generally <100 μm in size) that are trapped during the growth of a mineral. A variety of techniques enables the fluids and daughter crystals (any solid precipitated from the trapped fluid) to be identified from cavities greater than a few micrometers. Many minerals, however, contain fluid inclusions smaller than a micrometer. Though inclusions this small are difficult or impossible to study by conventional techniques, they are ideally suited for study by analytical/ transmission electron microscopy (A/TEM) and electron diffraction. We have used this technique to study fluid inclusions and daughter crystals in diamond and feldspar.Inclusion-rich samples of diamond and feldspar were ion-thinned to electron transparency and examined with a Philips 420T electron microscope (120 keV) equipped with an EDAX beryllium-windowed energy dispersive spectrometer. Thin edges of the sample were perforated in areas that appeared in light microscopy to be populated densely with inclusions. In a few cases, the perforations were bound polygonal sides to which crystals (structurally and compositionally different from the host mineral) were attached (Figure 1).


2020 ◽  
Vol 75 (11) ◽  
pp. 913-919
Author(s):  
Frank Krumeich

AbstractSince the 1970s, high-resolution transmission electron microscopy (HRTEM) is well established as the most appropriate method to explore the structural complexity of niobium tungsten oxides. Today, scanning transmission electron microscopy (STEM) represents an important alternative for performing the structural characterization of such oxides. STEM images recorded with a high-angle annular dark field (HAADF) detector provide not only information about the cation positions but also about the distribution of niobium and tungsten as the intensity is directly correlated to the local scattering potential. The applicability of this method is demonstrated here for the characterization of the real structure of Nb7W10O47.5. This sample contains well-ordered domains of Nb8W9O47 and Nb4W7O31 besides little ordered areas according to HRTEM results. Structural models for Nb4W7O31 and twinning occurring in this phase have been derived from the interpretation of HAADF-STEM images. A remarkable grain boundary between well-ordered domains of Nb4W7O31 and Nb8W9O47 has been found that contains one-dimensionally periodic features. Furthermore, short-range order observed in less ordered areas could be attributed to an intimate intergrowth of small sections of different tetragonal tungsten bronze (TTB) based structures.


Sign in / Sign up

Export Citation Format

Share Document