Effect of ultrasonication on lubrication performance of cellulose nano-crystalline (CNC) suspensions as green lubricants

2022 ◽  
pp. 119084
Author(s):  
Behzad Zakani ◽  
Sohrab Entezami ◽  
Dana Grecov ◽  
Hayder Salem ◽  
Ahmad Sedaghat
2016 ◽  
pp. 1
Author(s):  
Ramadan Alhabashi ◽  
S. Maddi ◽  
A. Gsiea ◽  
K. Ahmed ◽  
Fathi A. Elfallagh ◽  
...  

2011 ◽  
Vol 26 (5) ◽  
pp. 550-554 ◽  
Author(s):  
Torkian Leila ◽  
M Amini Mostafa ◽  
Bahrami Zohreh

RSC Advances ◽  
2021 ◽  
Vol 11 (42) ◽  
pp. 26218-26227
Author(s):  
R. Panda ◽  
S. A. Khan ◽  
U. P. Singh ◽  
R. Naik ◽  
N. C. Mishra

Swift heavy ion (SHI) irradiation in thin films significantly modifies the structure and related properties in a controlled manner.


Author(s):  
Yiming Han ◽  
Jing Wang ◽  
Xuyang Jin ◽  
Shanshan Wang ◽  
Rui Zhang

Under steady-state pure rolling conditions with low speed, the thickener fiber agglomerations can be maintained for a long time, generating a beneficial thicker film thickness. However, in industrial applications, motions with sliding or transient effects are very common for gears, rolling-element bearings or even chain drives, evaluation of the grease performance under such conditions is vital for determining the lubrication mechanism and designing new greases. In this project, optical interferometry experiments were carried out on a ball-disk test rig to study the disintegration time of the grease thickener agglomerations with the increase of the slide-to-roll ratio under steady-state and reciprocation motions. Under steady-state conditions, the thickener fiber agglomeration can exist for a while and the time becomes shorter with the increase of the slide-to-roll ratio above the critical speed. Below the critical speed, the thickener fiber can exist in the contact in the form of a quite thick film for a very long time under pure rolling conditions but that time is decreased with the increase of the slide-to-roll ratio. The introduction of the transient effect can further reduce the existence time of the thickener.


Friction ◽  
2021 ◽  
Author(s):  
Thi D. Ta ◽  
Hien D. Ta ◽  
Kiet A. Tieu ◽  
Bach H. Tran

AbstractThe rapid development of molecular dynamics (MD) simulations, as well as classical and reactive atomic potentials, has enabled tribologists to gain new insights into lubrication performance at the fundamental level. However, the impact of adopted potentials on the rheological properties and tribological performance of hydrocarbons has not been researched adequately. This extensive study analyzed the effects of surface structure, applied load, and force field (FF) on the thin film lubrication of hexadecane. The lubricant film became more solid-like as the applied load increased. In particular, with increasing applied load, there was an increase in the velocity slip, shear viscosity, and friction. The degree of ordering structure also changed with the applied load but rather insignificantly. It was also significantly dependent on the surface structure. The chosen FFs significantly influenced the lubrication performance, rheological properties, and molecular structure. The adaptive intermolecular reactive empirical bond order (AIREBO) potential resulted in more significant liquid-like behaviors, and the smallest velocity slip, degree of ordering structure, and shear stress were compared using the optimized potential for liquid simulations of united atoms (OPLS-UAs), condensed-phase optimized molecular potential for atomic simulation studies (COMPASS), and ReaxFF. Generally, classical potentials, such as OPLS-UA and COMPASS, exhibit more solid-like behavior than reactive potentials do. Furthermore, owing to the solid-like behavior, the lubricant temperatures obtained from OPLS-UA and COMPASS were much lower than those obtained from AIREBO and ReaxFF. The increase in shear stress, as well as the decrease in velocity slip with an increase in the surface potential parameter ζ, remained conserved for all chosen FFs, thus indicating that the proposed surface potential parameter ζ for the COMPASS FF can be verified for a wide range of atomic models.


Sign in / Sign up

Export Citation Format

Share Document