Check dams worldwide: Objectives, functions, effectiveness and undesired effects

CATENA ◽  
2021 ◽  
Vol 204 ◽  
pp. 105390
Author(s):  
Manuel Esteban Lucas-Borja ◽  
Guillaume Piton ◽  
Yang Yu ◽  
Carlos Castillo ◽  
Demetrio Antonio Zema
Keyword(s):  
2018 ◽  
Vol 2 (1) ◽  
pp. 28-42 ◽  
Author(s):  
Shanti Mahto ◽  
Anuj Kushwaha ◽  
Siva Subramanian M. ◽  
Nikita Nikita ◽  
T. B. N. Singh

Artificial recharge plays a prominent role in the sustainable management of groundwater resources. The study has proposed a methodology to viable artificial recharge structure using geographical information system (GIS) and empirical equation techniques for augmenting groundwater resources in the Ranchi urban and rural area of Ranchi District, Jharkhand. The thematic layers for geomorphology, drainage density, order of streams, runoff and trend has been prepared in the GIS environment using convection and remote sensing data. It has been found that the slope and topographic gradient of Ranchi region is one of the major governing factors, which restricts to hold surface water stagnant. Jumar watershed is found as the most feasible watershed for the construction of check dams/percolation tanks followed by Lower Subarnarekha watershed. Out of 15 deeper exploratory wells, 14 are declining. Harmu watershed is found to be in the worst condition in terms of availability of runoff water. Harmu, Kanke, Bariyatu, Namkum, Doranda, Hinoo and Hatia have found as the most suitable locations for installation of RTRWH within the Ranchi urban area. Based on the available field information, check dams are suggested as the most promising artificial recharge structures for Ranchi rural environment.


2007 ◽  
Vol 2 (2) ◽  
Author(s):  
William C. Lucas

Retaining rainfall where it lands is a fundamental benefit of Low Impact Development (LID). The Delaware Urban Runoff Management Model (DURMM) was developed to address the benefits of LID design. DURMM explicitly addresses the benefits of impervious area disconnection as well as swale flow routing that responds to flow retardance changes. Biofiltration swales are an effective LID BMP for treating urban runoff. By adding check dams, the detention storage provided can also reduce peak rates. This presentation explores how the DURMM runoff reduction approach can be integrated with detention routing procedures to project runoff volume and peak flow reductions provided by BMP facilities. This approach has been applied to a 1,200 unit project on 360 hectares located in Delaware, USA. Over 5 km of biofiltration swales have been designed, many of which have stone check dams placed every 30 to 35 meters to provide detention storage. The engineering involved in the design of such facilities uses hydrologic modeling based upon TR-20 routines, as adapted by the DURMM model. The hydraulic approach includes routing of flows through the check dams. This presentation summarizes the hydrological network, presents the hydrologic responses, along with selected hydrographs to demonstrate the potential of design approach.


2016 ◽  
Vol 30 (1-2) ◽  
pp. 119-127 ◽  
Author(s):  
Iván Ramos-Diez ◽  
Joaquín Navarro-Hevia ◽  
Roberto San Martín Fernández ◽  
Virginia Díaz-Gutiérrez ◽  
Jorge Mongil-Manso

Land ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 62
Author(s):  
Alberto Alfonso-Torreño ◽  
Álvaro Gómez-Gutiérrez ◽  
Susanne Schnabel

Gullies are sources and reservoirs of sediments and perform as efficient transfers of runoff and sediments. In recent years, several techniques and technologies emerged to facilitate monitoring of gully dynamics at unprecedented spatial and temporal resolutions. Here we present a detailed study of a valley-bottom gully in a Mediterranean rangeland with a savannah-like vegetation cover that was partially restored in 2017. Restoration activities included check dams (gabion weirs and fascines) and livestock exclosure by fencing. The specific objectives of this work were: (1) to analyze the effectiveness of the restoration activities, (2) to study erosion and deposition dynamics before and after the restoration activities using high-resolution digital elevation models (DEMs), (3) to examine the role of micro-morphology on the observed topographic changes, and (4) to compare the current and recent channel dynamics with previous studies conducted in the same study area through different methods and spatio-temporal scales, quantifying medium-term changes. Topographic changes were estimated using multi-temporal, high-resolution DEMs produced using structure-from-motion (SfM) photogrammetry and aerial images acquired by a fixed-wing unmanned aerial vehicle (UAV). The performance of the restoration activities was satisfactory to control gully erosion. Check dams were effective favoring sediment deposition and reducing lateral bank erosion. Livestock exclosure promoted the stabilization of bank headcuts. The implemented restoration measures increased notably sediment deposition.


Geomorphology ◽  
2019 ◽  
Vol 345 ◽  
pp. 106844 ◽  
Author(s):  
Sara Cucchiaro ◽  
Federico Cazorzi ◽  
Lorenzo Marchi ◽  
Stefano Crema ◽  
Alberto Beinat ◽  
...  

2018 ◽  
Vol 32 (14) ◽  
pp. 4793-4811 ◽  
Author(s):  
J. Yazdi ◽  
M. Sabbaghian Moghaddam ◽  
B. Saghafian

Sign in / Sign up

Export Citation Format

Share Document