Scale-up of High-Pressure FT Synthesis in 3D Printed Stainless Steel Microchannel Microreactors: Experiments and Modeling

2021 ◽  
Author(s):  
Nafeezuddin Mohammad ◽  
Chiemeka Chukwudoro ◽  
Sujoy Bepari ◽  
Omar Basha ◽  
Shyam Aravamudhan ◽  
...  
The Analyst ◽  
2014 ◽  
Vol 139 (24) ◽  
pp. 6343-6347 ◽  
Author(s):  
S. Sandron ◽  
B. Heery ◽  
V. Gupta ◽  
D. A. Collins ◽  
E. P. Nesterenko ◽  
...  

3D printing of metal alloys, both stainless steel and titanium, has been used for the creation of long capillary columns (600 mm) within small footprint designs (30 mm × 58 mm) for use in high-pressure liquid chromatography applications.


Author(s):  
L.E. Murr ◽  
J.S. Dunning ◽  
S. Shankar

Aluminum additions to conventional 18Cr-8Ni austenitic stainless steel compositions impart excellent resistance to high sulfur environments. However, problems are typically encountered with aluminum additions above about 1% due to embrittlement caused by aluminum in solid solution and the precipitation of NiAl. Consequently, little use has been made of aluminum alloy additions to stainless steels for use in sulfur or H2S environments in the chemical industry, energy conversion or generation, and mineral processing, for example.A research program at the Albany Research Center has concentrated on the development of a wrought alloy composition with as low a chromium content as possible, with the idea of developing a low-chromium substitute for 310 stainless steel (25Cr-20Ni) which is often used in high-sulfur environments. On the basis of workability and microstructural studies involving optical metallography on 100g button ingots soaked at 700°C and air-cooled, a low-alloy composition Fe-12Cr-5Ni-4Al (in wt %) was selected for scale up and property evaluation.


Alloy Digest ◽  
2015 ◽  
Vol 64 (1) ◽  

Abstract Sandvik Pressurfect is an austenitic chromium-nickel stainless steel with low carbon content used for high-pressure gasoline direct injection (GDI) fuel system. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and bend strength. It also includes information on corrosion resistance as well as heat treating and machining. Filing Code: SS-1195. Producer or source: Sandvik Steel Company.


2017 ◽  
Vol 86 (8) ◽  
pp. 555-558
Author(s):  
Kana JOTOKU ◽  
Jun NAKAMURA ◽  
Takahiro OSUKI ◽  
Hiroyuki HIRATA

2021 ◽  
Vol 37 (2) ◽  
pp. 190-201
Author(s):  
Sugrim Sagar ◽  
Yi Zhang ◽  
Hyun-Hee Choi ◽  
Yeon-Gil Jung ◽  
Jing Zhang

Author(s):  
Hideki Nakagawa

Practical application of fuel cell vehicle has started in the world, and high-pressure hydrogen tanks are currently considered to be the mainstream hydrogen storage system for commercially implemented fuel cell vehicle. Application of metallic materials to the components of high-pressure hydrogen storage system: hydrogen tanks, valves, measuring instructions and so on, have been discussed. In this work, tensile properties of four types of stainless steels were evaluated in 45MPa (6527psig) and 75MPa (10878psig) high-pressure gaseous hydrogen at a slow strain rate of 3×10−6 s−1 at ambient temperature. Type 316L (UNS S31603) stainless steel hardly showed ductility loss in gaseous hydrogen, since it had stable austenitic structure. On the other hand, Type 304 (UNS S30400) metastable austenitic stainless steel showed remarkable ductility loss in gaseous hydrogen, which was caused by the hydrogen embrittlement of strain induced martensitic phase. Likewise, Type 205 (UNS S20500) nitrogen-strengthened austenitic stainless steel showed remarkable ductility loss in gaseous hydrogen, though it had stable austenitic structure in the same manner as Type 316L. The ductility loss of Type 205 was due to the hydrogen embrittlement of austenitic phase resulting from the formation of planar dislocation array. Furthermore, Type 329J4L (UNS S31260) duplex stainless steel showed extreme ductility loss in gaseous hydrogen, which was caused by the hydrogen embrittlement of ferritic phase.


2016 ◽  
Vol 657 ◽  
pp. 215-223 ◽  
Author(s):  
Jenő Gubicza ◽  
Moustafa El-Tahawy ◽  
Yi Huang ◽  
Hyelim Choi ◽  
Heeman Choe ◽  
...  

2011 ◽  
Vol 239-242 ◽  
pp. 1300-1303
Author(s):  
Hong Cai Wang ◽  
Minoru Umemoto ◽  
Innocent Shuro ◽  
Yoshikazu Todaka ◽  
Ho Hung Kuo

SUS316L austenitic stainless steel was subjected to severe plastic deformation (SPD) by the method of high pressure torsion (HPT). From a fully austenitic matrix (γ), HPT resulted in phase transformation from g®a¢. The largest volume fraction of 70% a¢ was obtained at 0.2 revolutions per minute (rpm) while was limited to 3% at 5rpm. Pre-straining of g by HPT at 5rpm decreases the volume fraction of a¢ obtained by HPT at 0.2rpm. By HPT at 5rpm, a¢®g reverse transformation was observed for a¢ produced by HPT at 0.2rpm.


2021 ◽  
Author(s):  
Jorge Rodriguez ◽  
Susana Gómez ◽  
Ngoc Tran Dinh ◽  
Giovanni Ortuño ◽  
Narendra Borole

Abstract The paper presents the application of a holistic approach to corrosion prediction that overcomes classical pitfalls in corrosion testing and modelling at high pressure, high temperature and high CO2 conditions. Thermodynamic modelling of field and lab conditions allows for more accurate predictions by a novel CO2/H2S general corrosion model validated by laboratory tests. In the proposed workflow, autoclave tests at high pressure and temperature are designed after modeling corrosion in a rigorous thermodynamic framework including fluid-dynamic modelling; the modeled steps include preparation, gas loading and heating of fluid samples at high CO2 concentration, and high flow velocities. An autoclave setup is proposed and validated to simultaneously test different conditions. Corrosion rates are extrapolated to compute service life of the materials and guide material selection. The results from the model and tests extend the application of selected stainless steel grade beyond the threshold conditions calculated by simplistic models and guidelines. Consideration of fugacities and true aqueous compositions allows for accurate thermodynamic representation of field conditions. Computation by rigorous fluid dynamics of shear stress, multiphase flow and heat transfer effects inside completion geometry lead to a proper interpretation of corrosion mechanisms and models to apply. In the case study used to showcase the workflow, conventional stainless steel is validated for most of the tubing. It is observed that some sections of the system in static condition are not exposed to liquid water, allowing for safe use of carbon steel, while as for other critical parts, more noble materials are deemed necessary. Harsh environments pose a challenge to the application of conventional steel materials. The workflow applied to the case study allows accurate representation and application of materials in its application limit region, allowing for safe use of carbon steel or less noble stainless steels in those areas of the completion where corrosion is limited by multiphase fluid-dynamics, heat transfer or the both. The approximation is validated for real case study under high CO2 content, and is considered also valid in the transportation of higher amounts of CO2, for example, in CCUS activities.


Sign in / Sign up

Export Citation Format

Share Document