Transcriptome analysis of acute high temperature-responsive genes and pathways in Palaemon gravieri

Author(s):  
Wenjun Shi ◽  
Runhao Hu ◽  
Pan Wang ◽  
Ran Zhao ◽  
Hui Shen ◽  
...  
2021 ◽  
Author(s):  
Zhaoran Wei ◽  
Qiaoling Yuan ◽  
Hai Lin ◽  
Xiaoxia Li ◽  
Chao Zhang ◽  
...  

Abstract Background: Rice plants suffer from the rising temperature which is becoming more and more prominent. Mining heat-resistant genes and applying them to rice breeding is a feasible and effective way to solve the problem.Result: Three main biomass traits, including shoot length, dry weight, and fresh weight, changed after abnormally high temperature treatment in the rice seedling stage of a recombinant inbred lines and germplasm population. Based on a comparison of the results of linkage analysis and genome-wide association analysis, two loci with lengths of 57 kb and 69 kb in qDW7 and qFW6, respectively, was associated with the rice response to abnormally high temperatures in the seedling stage. Meanwhile, based on integrated transcriptome analysis, some genes are considered as important candidate genes. Combining with known genes and analysis of homologous genes, it was found that there are eight genes in candidate intervals that need to be focused in subsequent research.Conclusions: The results indicated several relevant loci, which would help researchers to further discover beneficial heat-resistant genes that can be applied to rice heat-resistant breeding.


Genes ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 1066
Author(s):  
Gongmin Cheng ◽  
Longyan Zhang ◽  
Hengling Wei ◽  
Hantao Wang ◽  
Jianhua Lu ◽  
...  

Gossypium barbadense is an important source of natural textile fibers, as is Gossypium hirsutum. Cotton fiber development is often affected by various environmental factors, such as abnormal temperature. However, little is known about the underlying mechanisms of temperature regulating the fuzz fiber initiation. In this study, we reveal that high temperatures (HT) accelerate fiber development, improve fiber quality, and induced fuzz initiation of a thermo-sensitive G. barbadense variety L7009. It was proved that fuzz initiation was inhibited by low temperature (LT), and 4 dpa was the stage most susceptible to temperature stress during the fuzz initiation period. A total of 43,826 differentially expressed genes (DEGs) were identified through comparative transcriptome analysis. Of these, 9667 were involved in fiber development and temperature response with 901 transcription factor genes and 189 genes related to plant hormone signal transduction. Further analysis of gene expression patterns revealed that 240 genes were potentially involved in fuzz initiation induced by high temperature. Functional annotation revealed that the candidate genes related to fuzz initiation were significantly involved in the asparagine biosynthetic process, cell wall biosynthesis, and stress response. The expression trends of sixteen genes randomly selected from the RNA-seq data were almost consistent with the results of qRT-PCR. Our study revealed several potential candidate genes and pathways related to fuzz initiation induced by high temperature. This provides a new view of temperature-induced tissue and organ development in Gossypium barbadense.


Sign in / Sign up

Export Citation Format

Share Document