Novel molecular mechanisms of antitumor action of dichloroacetate against T cell lymphoma: Implication of altered glucose metabolism, pH homeostasis and cell survival regulation

2012 ◽  
Vol 199 (1) ◽  
pp. 29-37 ◽  
Author(s):  
Ajay Kumar ◽  
Shiva Kant ◽  
Sukh Mahendra Singh
2021 ◽  
Vol 12 ◽  
Author(s):  
Yugal Goel ◽  
Saveg Yadav ◽  
Shrish Kumar Pandey ◽  
Mithlesh Kumar Temre ◽  
Vinay Kumar Singh ◽  
...  

Methyl jasmonate (MJ) displays antineoplastic potential against numerous neoplastic cells. However, several mechanistic aspects of its antineoplastic action against malignancies of T cell origin remain elusive. The present investigation reports the novel targets of MJ and mechanistic pathways of MJ-mediated antineoplastic and chemosensitizing action against tumor cells derived from murine T-cell lymphoma, designated as Dalton’s lymphoma (DL). The present study demonstrates that MJ directly docks to HIF-1α, hexokinase 2, and Hsp70 at prominent binding sites. MJ exhibits tumoricidal action against tumor cells via induction of apoptosis and necrosis through multiple pathways, including declined mitochondrial membrane potential, enhanced expression of ROS, altered pH homeostasis, an elevated level of cytosolic cytochrome c, and modulated expression of crucial cell survival and metabolism regulatory molecules. Additionally, this study also reports the chemosensitizing ability of MJ against T cell lymphoma accompanied by a declined expression of MDR1. This study sheds new light by demonstrating the implication of novel molecular mechanisms underlying the antitumor action of MJ against T-cell lymphoma and hence has immense translational significance.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4870-4870
Author(s):  
Leonidas Zierock ◽  
Wolfgang Melchinger ◽  
Bettina Wehrle ◽  
Juergen Finke ◽  
Reinhard Marks

Abstract Abstract 4870 Since the succesful treatment of T cell lymphoma remains to be problematic, identification of new pharmacological targets in this malignancies are desperately needed. The AMPK-Rheb-mTOR signaling pathway plays an important role in regulating processes such as proliferation and proteinsynthesis according to energy and nutrient levels in normal and malignant T cells. Inhibitors of mTOR have shown promising results in clinical trials in several lymphoma types. Similarly, recent data could prove inhibitors of farnesyltransferase (FTI) to be effective as a single agent in certain subtypes of T cell lymphoma. Despite divergent data regarding the molecular target of FTI action, recently published work suggest inhibition of prenylation of the GTPase Rheb as putative mechanism for the antineoplastic effects of FTI (Basso et al., J Biol Chem, 2005). Therefore, combining inhibition of mTOR and Rheb might result in increased inhibition of T cell lymphoma proliferation. To investigate this hypothesis, human T cell lymphoma cell lines DERL-2 (originated from hepatosplenic gamma-delta T cell lymphoma), Karpas-299 (originated from anaplastic large cell T cell lymphoma) and normal human CD4+ T cells were incubated with a combination of everolimus as mTOR inhibitor and FTI (lonafarnib, SCH-66336) or the single agents. While both substances showed an additive combined anti-proliferative effect in DERL-2 cells, proliferation of Karpas cells were more susceptible to inhibition by FTI. On a molecular level, despite substantial growth inhibition in both cell lines by everolimus alone, phosphorylation of 4EBP1 and p70S6K remained unaffected, while FTI mediated reduction of Karpas cell proliferation was associated with a substantial decrease in AMPK phosphorylation together with an overexpression of p27kip, which could not be observed in DERL-2 cells. In contrast, incubation of stimulated human CD4+ T cells with the drugs alone or in combination did not result in changes in the phosporylation status of AMPK. Nevertheless, in contrast to everolimus, FTI induced a reduction of total protein expression of AMPK and other proteins, e.g. AKT. In addition, contrary to the observations in the malignant T cells, FTI treatment of unstimulated human CD4+ T cells resulted even in an increase of AMPK-phosphorylation. A hint for the explanation of these conflicting data came from analyses of Rheb expression in the examined cell types. While Rheb was easily detectable in the malignant T cell lines and the stimulated CD4+ T cells, it was almost absent in unstimulated CD4+ T cells. A model derived from this findings is that FTI effects depend on different targets available for inhibition of prenylation according to the activation or differentiation status of the T cells. While Rheb might be the target in malignant or activated T cells, another target, e.g. phosphatases, might be responsible for the FTI effect in resting T cells where Rheb is not available. In Karpas cells a particular connection between Rheb and AMPK might exist, as described for other cell lines (Lacher et al., Oncogene, 2010). Inhibition of this Rheb-AMPK axis might explain the particular gowth inhibiting effect of FTI in this model of anaplastic large T cell lymphoma. Nevertherless, the presented data show a combined effect of mTOR inhibitors and FTI for the potent treatment of T cell lymphoma involving different molecular mechanisms according to the lymphoma subtype. Disclosures: Finke: Fresenius Biotech GmbH: Honoraria, Research Funding.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhiyuan Zhou ◽  
Xinfeng Chen ◽  
Zhaoming Li ◽  
Xinhua Wang ◽  
Mingzhi Zhang

AbstractNK/T cell lymphoma (NKTCL) represents an aggressive lymphoid malignancy characterized by dismal prognosis. Immune-checkpoint blockade has shown promising efficacy in NKTCL. However, the molecular mechanisms underlying immune evasion in NKTCL have never been explored. Here, proteomic analysis was used to identify the differentially expressed proteins between NKTCL patients and healthy individuals. We found that S100A9, an immunosuppressive molecule, was much higher in NKTCL patients both in serum and tumor stroma. Elevated level of S100A9 was associated with advanced stage, poor overall response and early recurrence. Moreover, percentage of myeloid-derived suppressor cells (MDSCs) in peripheral blood was positively correlated with levels of S100A9. Low concentration of S100A9 promoted proliferation of NKTCL cells, while did not affect cell apoptosis and cell cycles. Furthermore, programmed death ligand 1 (PD-L1) expression on NKTCL cells was up-regulated by S100A9 through activation of ERK1/2 signaling. Inhibition of ERK1/2 signaling significantly decreased tumor growth and PD-L1 expression induced by S100A9. In conclusion, our research firstly identified S100A9 as an immune suppressor in the tumorigenesis of NKTCL via accumulation of MDSCs and upregulation of PD-L1 expression. S100A9 may serve as a potential target to increase the efficacy of immunotherapy in NKTCL.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3076-3076 ◽  
Author(s):  
Wolfgang Melchinger ◽  
Leonidas Zierock ◽  
Bettina Wehrle ◽  
Reinhard Marks

Abstract Introduction The outcome of patients with T cell lymphoma treated with standard chemoterapeutic substances remain poor, making the search for new active substances a highly medical need in this hematologic neoplasia. Recent phase II clinical trials showed very promising activity of farnesyltransferaseinhibitors (FTI) in relapsed/refractory T-NHL patients (Witzig et al. 2011). Regarding the molecular mechanisms behind this therapeutic effect, conflicting data regarding Ras as the initially proposed intracellular target of FTI and the involvement of MAP kinases in cellular effects of FTI in T cells exist (Marks et al. 2007, Ding et al. 2011). Together with observations in breast and ovarian cancer cells suggesting the GTPase Rheb as target for inhibition of farnesylation (Basso et al. 2005), the targets of FTI might vary according to the examined cell type. Interestingly, in breast cancer cells FTI mediatied inhibition of Rheb action resulted in reduced mTOR signaling. Nevertheless, as a putative additional targeted treatment approach in T-NHL, incubation with mTOR inhibitors showed not only substantial antiproliferative effects in normal T cells but also in malignant human T cell lymphoma lines in vitro (Huang et al. 2010). Since further clinical trials with both substances did not show severe side effects, adding everolimus as combination partner might even enhance clinical activity of FTI in T cell lymphomas. Therefore, in order to test this hypothesis and to analyse if both substances differ in their molecular mechanisms of action, FTI and everolimus were tested in vitro in T cell lymphoma lines (Karpas, Derl-2, Jurkat) to evaluate potential synergistic modes of action. Methods and Results Incubation of human T cell lymphoma lines Karpas and Derl-2 with the FTI SCH66336 (lonafarnib) or the mTOR inhibitor everolimus showed a reduction in proliferation in a dose dependent manner (EC50 for everolimus: 0.1nM, EC50 for lonafarnib: 0.5 µM). Combining both drugs resulted in synergistic inhibition of proliferation. This inhibitory effect correlated with increased p27KIP1 expression. In our experiments, Rheb appeared to be highly expressed in all examined T cell lymphoma lines with even additional increase of protein expression in Karpas cells after FTI incubation. Comparing FTI action to inhibition of mTOR by everolimus on a molecular level, in our experiments lonafarnib treatment of Karpas cells resulted in an unexpected reduction in AMPK-phosphorylation, implicating involvement of this metabolic pathway in FTI mediated inhibition of proliferation in malignant T cells. This effect could not be observed in everolimus treated Karpas cells. In contrast, naive human CD4+ T cells showed very little Rheb protein expression, which could be significantly increased after TCR stimulation by induction of Rheb mRNA transcription. While everolimus treatment of TCR-activated normal human CD4+ T cells resulted in AKT-hyperphosphorylation, FTI did not induce any changes in AKT. Contrary to the malignant T cells, FTI treatment had no impact of AMPK phosphorylation in activated T cells. Actually, naive T cells treated with FTI showed an hyperphosphorylated AMPK status. Conclusion Lonafarnib and everolimus show synergistic antiproliferative effects in T cell lymphoma lines, most likely by interfering with mTOR and AMPK signalling, making this combination therapy interesting for clinical trials. In contrast, FTI does not mediate AMPK in activated normal T cells. This observations are in accordance with a differential targeting of Rheb by FTI in malignant or normal human T cells. Disclosures: No relevant conflicts of interest to declare.


2011 ◽  
Vol 32 (1) ◽  
pp. 91-104 ◽  
Author(s):  
Anjani Kumar ◽  
Naveen Kumar Vishvakarma ◽  
Abhishek Tyagi ◽  
Alok Chandra Bharti ◽  
Sukh Mahendra Singh

The present study explores the potential of the anti-neoplastic action of aspirin in a transplantable murine tumour model of a spontaneously originated T-cell lymphoma designated as Dalton's lymphoma. The antitumour action of aspirin administered to tumour-bearing mice through oral and/or intraperitoneal (intratumoral) routes was measured via estimation of survival of tumour-bearing mice, tumour cell viability, tumour progression and changes in the tumour microenvironment. Intratumour administration of aspirin examined to assess its therapeutic potential resulted in retardation of tumour progression in tumour-bearing mice. Oral administration of aspirin to mice as a prophylactic measure prior to tumour transplantation further primed the anti-neoplastic action of aspirin administered at the tumour site. The anti-neoplastic action of aspirin was associated with a decline in tumour cell survival, augmented induction of apoptosis and nuclear shrinkage. Tumour cells of aspirin-treated mice were found arrested in G0/G1 phase of the cell cycle and showed nuclear localization of cyclin B1. Intratumoral administration of aspirin was accompanied by alterations in the biophysical, biochemical and immunological composition of the tumour microenvironment with respect to pH, level of dissolved O2, glucose, lactate, nitric oxide, IFNγ (interferon γ), IL-4 (interleukin-4), IL-6 and IL-10, whereas the TGF-β (tumour growth factor-β) level was unaltered. Tumour cells obtained from aspirin-treated tumour-bearing mice demonstrated an altered expression of pH regulators monocarboxylate transporter-1 and V-ATPase along with alteration in the level of cell survival regulatory molecules such as survivin, vascular endothelial growth factor, heat-shock protein 70, glucose transporter-1, SOCS-5 (suppressor of cytokine signalling-5), HIF-1α (hypoxia-inducible factor-1α) and PUMA (p53 up-regulated modulator of apoptosis). The study demonstrates a possible indirect involvement of the tumour microenvironment in addition to a direct but limited anti-neoplastic action of aspirin in the retardation of tumour growth.


Blood ◽  
2010 ◽  
Vol 116 (25) ◽  
pp. 5615-5621 ◽  
Author(s):  
Jun Li ◽  
Takashi Maruyama ◽  
Pin Zhang ◽  
Joanne E. Konkel ◽  
Victoria Hoffman ◽  
...  

Abstract Human γδ T-cell lymphoma is a rare clinicopathologic entity with aggressive course and poor prognosis. The etiology and pathogenesis of γδ T-cell lymphoma is unknown. We show here that mice with deficiency in inhibitory helix-loop-helix protein Id3 (Id3−/−) developed γδ T-cell lymphoma that resembled human γδ T-cell lymphoma. The Id3−/− mice with lymphoma showed splenomegaly, hepatomegaly, and lymphadenopathy with involvement of bone marrow, thymus, kidney, and lungs between 6 and 15 months of age. Phenotypic analysis revealed that lymphomatous cells were cluster of differentiation (CD)3+, γδ T-cell receptor (TCR)+, and αβ TCR−, and expressed CD8+CD4−, CD4+CD8−, or a mixture of the two. Id3−/− γδ T-cell lymphoma used predominantly Vγ1.1, some Vγ3, yet no Vγ2 TCR, and some showed increased levels of the oncogene c-Myc. Strikingly, adoptive transfer of the γδ T-cell lymphoma into syngeneic Rag1−/− mice resulted in aggressive γδ T-cell lymphoma, identical to the Id3−/− donor. Thus, our data demonstrate that Id3 regulates the development of γδ T-cell lymphoma in mice, raising a possibility of Id3 gene mutation in human γδ T-cell lymphoma. Our model will provide a tool for studying the molecular mechanisms and development of human γδ T-cell lymphoma.


Sign in / Sign up

Export Citation Format

Share Document