Anti-neoplastic action of aspirin against a T-cell lymphoma involves an alteration in the tumour microenvironment and regulation of tumour cell survival

2011 ◽  
Vol 32 (1) ◽  
pp. 91-104 ◽  
Author(s):  
Anjani Kumar ◽  
Naveen Kumar Vishvakarma ◽  
Abhishek Tyagi ◽  
Alok Chandra Bharti ◽  
Sukh Mahendra Singh

The present study explores the potential of the anti-neoplastic action of aspirin in a transplantable murine tumour model of a spontaneously originated T-cell lymphoma designated as Dalton's lymphoma. The antitumour action of aspirin administered to tumour-bearing mice through oral and/or intraperitoneal (intratumoral) routes was measured via estimation of survival of tumour-bearing mice, tumour cell viability, tumour progression and changes in the tumour microenvironment. Intratumour administration of aspirin examined to assess its therapeutic potential resulted in retardation of tumour progression in tumour-bearing mice. Oral administration of aspirin to mice as a prophylactic measure prior to tumour transplantation further primed the anti-neoplastic action of aspirin administered at the tumour site. The anti-neoplastic action of aspirin was associated with a decline in tumour cell survival, augmented induction of apoptosis and nuclear shrinkage. Tumour cells of aspirin-treated mice were found arrested in G0/G1 phase of the cell cycle and showed nuclear localization of cyclin B1. Intratumoral administration of aspirin was accompanied by alterations in the biophysical, biochemical and immunological composition of the tumour microenvironment with respect to pH, level of dissolved O2, glucose, lactate, nitric oxide, IFNγ (interferon γ), IL-4 (interleukin-4), IL-6 and IL-10, whereas the TGF-β (tumour growth factor-β) level was unaltered. Tumour cells obtained from aspirin-treated tumour-bearing mice demonstrated an altered expression of pH regulators monocarboxylate transporter-1 and V-ATPase along with alteration in the level of cell survival regulatory molecules such as survivin, vascular endothelial growth factor, heat-shock protein 70, glucose transporter-1, SOCS-5 (suppressor of cytokine signalling-5), HIF-1α (hypoxia-inducible factor-1α) and PUMA (p53 up-regulated modulator of apoptosis). The study demonstrates a possible indirect involvement of the tumour microenvironment in addition to a direct but limited anti-neoplastic action of aspirin in the retardation of tumour growth.

2009 ◽  
Vol 9 (4) ◽  
pp. 395-398 ◽  
Author(s):  
Masayuki Kikukawa ◽  
Takahiko Umahara ◽  
Masayuki Kikawada ◽  
Kiyoshi Kanaya ◽  
Hirofumi Sakurai ◽  
...  

1981 ◽  
Vol 154 (5) ◽  
pp. 1403-1418 ◽  
Author(s):  
JE Gootenberg ◽  
FW Ruscetti ◽  
JW Mier ◽  
A Gazdar ◽  
RC Gallo

Three cell lines of mature T cell origin derived from patients with cutaneous T cell lymphoma-leukemias (CTCL) were found to be constitutive producers of T cell growth factor (L-TCGF). These are the first reported human cell lines which constitutively produce TCGF. Biologically active TCGF could also be eluted from the surface of these cells using an acid glycine buffer under conditions that maintained cell viability, and subcellular fractionation showed that almost all the TCGF activity was associated with the plasma membrane. Over 30 other human hematopoietic cell lines derived from other disorders were unable to produce TCGF even after induction, and their acid eluates did not contain TCGF activity. L-TCGF from CTCL lines had the same biological activity as TCGF obtained from normal leukocytes (N-TCGF) in that they both supported the long-term growth of normal T cells only after the cells were previously activated by antigen or lectin. Both L-TCGF and N-TCGF increased the rate of proliferation of TCGF-independent and TCGF-dependent CTCL cell lines. The same three factor-independent cell lines that released TCGF adsorbed TCGF in a cell-concentration, time-, and temperature-dependent manner. Since the CTCL cell lines produce TCGF, adsorb TCGF, and increase their proliferative rate in response to TCGF or a related molecule, it is suggested that this endogenously produced factor plays a role in maintaining the abnormal proliferation of these cells in culture as permanently growing cell lines independent of exogenous TCGF. However, this does not mean that this is an essential aspect of neoplastic transformation. Since it is unusual to develop these cell lines in the absence of the continuous need for added TCGF, "autostimulation" may be one of the many unusual variant phenotypic properties sometimes associated with neoplastic cells that gives them a selective advantage for in vitro growth.


Sign in / Sign up

Export Citation Format

Share Document