The role of hydrogen partial pressure in the gas phase hydrogenation of p-chloronitrobenzene over alumina supported Au and Pd: A consideration of reaction thermodynamics and kinetics

2012 ◽  
Vol 210 ◽  
pp. 103-113 ◽  
Author(s):  
Xiaodong Wang ◽  
Noémie Perret ◽  
Mark A. Keane
2016 ◽  
Vol 3 (4) ◽  
pp. 045602 ◽  
Author(s):  
Welyson T S Ramos ◽  
Thiago H R Cunha ◽  
Ingrid D Barcelos ◽  
Douglas R Miquita ◽  
Gustavo A Ferrari ◽  
...  

Author(s):  
A. S. Farlenkov ◽  
N. A. Zhuravlev ◽  
Т. A. Denisova ◽  
М. V. Ananyev

The research uses the method of high-temperature thermogravimetric analysis to study the processes of interaction of the gas phase in the temperature range 300–950 °C in the partial pressure ranges of oxygen 8.1–50.7 kPa, water 6.1–24.3 kPa and hydrogen 4.1 kPa with La1–xSrxScO3–α oxides (x = 0; 0.04; 0.09). In the case of an increase in the partial pressure of water vapor at a constant partial pressure of oxygen (or hydrogen) in the gas phase, the apparent level of saturation of protons is shown to increase. An increase in the apparent level of saturation of protons of the sample also occurs with an increase in the partial pressure of oxygen at a constant partial pressure of water vapor in the gas phase. The paper discusses the causes of the observed processes. The research uses the hydrogen isotope exchange method with the equilibration of the isotope composition of the gas phase to study the incorporation of hydrogen into the structure of proton-conducting oxides based on strontium-doped lanthanum scandates. The concentrations of protons and deuterons were determined in the temperature range of 300–800 °C and a hydrogen pressure of 0.2 kPa for La0.91Sr0.09ScO3–α oxide. The paper discusses the role of oxygen vacancies in the process of incorporation of protons and deuterons from the atmosphere of molecular hydrogen into the structure of the proton conducting oxides La1–xSrxScO3–α (x = 0; 0.04; 0.09). The proton magnetic resonance method was used to study the local structure in the temperature range 23–110 °C at a rotation speed of 10 kHz (MAS) for La0.96Sr0.04ScO3–α oxide after thermogravimetric measurements in an atmosphere containing water vapor, and after exposures in molecular hydrogen atmosphere. The existence of proton defects incorporated into the volume of the investigated proton oxide from both the atmosphere containing water and the atmosphere containing molecular hydrogen is unambiguously shown. The paper considers the effect of the contributions of the volume and surface of La0.96Sr0.04ScO3–α oxide on the shape of the proton magnetic resonance spectra.


2020 ◽  
Vol 500 (3) ◽  
pp. 3414-3424
Author(s):  
Alec Paulive ◽  
Christopher N Shingledecker ◽  
Eric Herbst

ABSTRACT Complex organic molecules (COMs) have been detected in a variety of interstellar sources. The abundances of these COMs in warming sources can be explained by syntheses linked to increasing temperatures and densities, allowing quasi-thermal chemical reactions to occur rapidly enough to produce observable amounts of COMs, both in the gas phase, and upon dust grain ice mantles. The COMs produced on grains then become gaseous as the temperature increases sufficiently to allow their thermal desorption. The recent observation of gaseous COMs in cold sources has not been fully explained by these gas-phase and dust grain production routes. Radiolysis chemistry is a possible non-thermal method of producing COMs in cold dark clouds. This new method greatly increases the modelled abundance of selected COMs upon the ice surface and within the ice mantle due to excitation and ionization events from cosmic ray bombardment. We examine the effect of radiolysis on three C2H4O2 isomers – methyl formate (HCOOCH3), glycolaldehyde (HCOCH2OH), and acetic acid (CH3COOH) – and a chemically similar molecule, dimethyl ether (CH3OCH3), in cold dark clouds. We then compare our modelled gaseous abundances with observed abundances in TMC-1, L1689B, and B1-b.


2007 ◽  
Vol 52 (10) ◽  
pp. 1498-1502 ◽  
Author(s):  
V. F. Kostryukov ◽  
V. R. Pshestanchik ◽  
I. A. Donkareva ◽  
B. L. Agapov ◽  
S. I. Lopatin ◽  
...  
Keyword(s):  

2017 ◽  
Vol 16 (4) ◽  
pp. 507-518 ◽  
Author(s):  
Ivo S. Vinklárek ◽  
Marek Scholz ◽  
Roman Dědic ◽  
Jan Hála

The PpIX DF show the significant role of SOFDF mechanism at high concentrations and at atmospheric partial pressure of oxygen and should be considered when developing diagnostic tools for clinical applications.


Sign in / Sign up

Export Citation Format

Share Document