Correlation between microbial community structure and performances of membrane bioreactor for treatment of palm oil mill effluent

2017 ◽  
Vol 308 ◽  
pp. 656-663 ◽  
Author(s):  
Chin Hong Neoh ◽  
Pui Yi Yung ◽  
Zainura Zainon Noor ◽  
Mohd Hafizuddin Razak ◽  
Azmi Aris ◽  
...  
2017 ◽  
Vol 245 ◽  
pp. 916-924 ◽  
Author(s):  
Sze Pin Tan ◽  
Hong Feng Kong ◽  
Mohammed J.K. Bashir ◽  
Po Kim Lo ◽  
Chii-Dong Ho ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
S. Annop ◽  
P. Sridang ◽  
P. Chevakidagarn ◽  
K. Nopthavorn

The main objective was to compare the performances and the removal efficiencies of two biological treatment systems, a submerged membrane bioreactor (SMBR) and a simultaneous activated sludge (AS), for treating Palm Oil Mill Effluent (POME). Two lab scale units of SMBR and AS with a working volume of 24 L were operated under favorable biological conditions and minimized membrane fouling intensity. To achieve both carbonaceous and nitrogen removal, the cyclic air intermittent and dissolved oxygen control were performed into SMBR and AS with the influent flow rate about 16 L/d respectively. In terms of organic removal and membrane performance, the SMBR showed good removal efficiency to treat high strength wastewater with organic loading variation of POME. The average removal rates of TCOD, BOD, Turbidity, Color, Oil and Grease, NH3–N, TKN were 69±2, 76±2, 100±1, 37±21, 92±6, 67±4 and 75±10% respectively. Results pointed out the benefit of membranes retained totally the active compositions of biomass in each stage of development. The AS showed the limitation of sedimentation phase for sludge and oil separation. The characteristics of sludge in SMBR showed healthy floc formations and good settling after 240 h. The concentrations of COD and BOD in permeate were around 870±53 and 37±13 mg/L.


Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 879 ◽  
Author(s):  
Xiaolan Xiao ◽  
Wansheng Shi ◽  
Wenquan Ruan

The performance and microbial community structure for treating lipids-rich kitchen waste slurry in mesophilic Anaerobic Membrane Bioreactor (m-AnMBR) and thermophilic AnMBR (t-AnMBR) were compared in this study. Higher Organic Loading Rate (OLR) of 12 kg-COD/(m3·d), better Chemical Oxygen Demand (COD) removal efficiency over 98%, stronger stability with Volatile Fatty Acids (VFAs)/alkalinity below 0.04, higher flux with 18 L/(m2·h) and lower Long Chain Fatty Acids (LCFAs) concentration of 550 mg/L were obtained in the m-AnMBR. Directly increasing temperature from 39 to 55 °C resulted in a collapse of the t-AnMBR. Acclimation via gradually increasing temperature made the t-AnMBR run successfully with lower OLR and COD removal efficiency of 7.5 kg-COD/(m3·d) and 96%. An obvious discrepancy of microbial community structure was presented between the m-AnMBR and t-AnMBR via the 16S rRNA gene sequence analysis. The Methanomethylovorans and Methanoculleus were dominant in the t-AnMBR instead of Methanobacterium and Methanothrix in the m-AnMBR.


Sign in / Sign up

Export Citation Format

Share Document