Functionalized hierarchical porous polymeric monoliths as versatile platforms to support uniform and ultrafine metal nanoparticles for heterogeneous catalysis

2020 ◽  
Vol 390 ◽  
pp. 124485 ◽  
Author(s):  
Liangxiao Tan ◽  
Bien Tan
2021 ◽  
Vol 3 (7) ◽  
pp. 1865-1886
Author(s):  
Hongyin Hu ◽  
Shuanglong Lu ◽  
Ting Li ◽  
Yue Zhang ◽  
Chenxi Guo ◽  
...  

This article reviews the controlled growth of UMNPs mediated by different types of solid supports and their catalytic properties. The importance of certain structural features of the supports is also discussed.


Author(s):  
Anand S Burange ◽  
Awais Ahmad ◽  
Rafael Luque

Efforts to bridge the gap between homogeneous and heterogeneous catalysis include the use of surface organometallic chemistry, single atom catalysis and monodispersed metal nanoparticles, among others. In case of metal...


Author(s):  
Yugang Ren ◽  
Xiaojing Liu ◽  
Zhaojun Zhang ◽  
Xiangjian Shen

The breaking of the C-H bond of CH4 is of great importance and one of the most efficient strategies in heterogeneous catalysis is to alter surface electronic structure by doping...


2021 ◽  
Vol 01 ◽  
Author(s):  
Sharwari K. Mengane ◽  
Ronghui Wu ◽  
Liyun Ma ◽  
Chhaya S. Panse ◽  
Shailesh N. Vajekar ◽  
...  

: Catalysis is the multidisciplinary field involving many areas of chemistry, notably in organometallic chemistry and materials science. It has great applications in synthesis of many industrially applicable compounds such as fuels and fine chemicals. The activity and selectivity are a key issue in catalysis that generally allied to high surface area. The current research activities mainly deal with the homogeneous and heterogeneous catalysis. Homogeneous and heterogeneous catalysis have certain drawbacks which restricts their application to great extent but have their own advantages. Hence, it has a predominant concern of current research to find out an alternate to overcome their drawbacks. Therefore, it is highly desirable to find a catalytic protocol that offers high selectivity and excellent product yield with quick and easy recovery. Along with their various applications as alternatives to conventional bulk materials nanomaterial have established its great role in different industrial and scientific applications. Nanocatalysis has emerged as new alternative to the conventional homogeneous and heterogeneous catalysis. The nanomaterials are responsible to enhance surface area of the catalyst, which ultimately increases the catalyst reactants contacts. In addition, it acts as robust material and has high surface area like heterogeneous catalysts. Insolubility of such nanomaterial in reaction medium makes them easily separable, hence, catalyst can be easily separate from the product. Hence, it has been proven that nanocatalysts behave like homogeneous as well as heterogeneous catalysts which work as a bridge between the conventional catalytic systems. Considering these merits; researchers has paid their attention towards applications of nanocatalyst in several organic reactions. This review article focused on the catalytic applications of metal nanoparticles (MNPs) such as Pd, Ag, Au, Cu, Pt in ligand free coupling reactions. In addition, it covers applications of bimetallic and multimetallic nanoparticles in ligand free coupling reactions.


2017 ◽  
Vol 23 (S1) ◽  
pp. 2038-2039
Author(s):  
Dipanwita Chatterjee ◽  
R. Akash ◽  
K. Kamalnath ◽  
Rafia Ahmad ◽  
Abhishek Singh ◽  
...  

2006 ◽  
Vol 89 (24) ◽  
pp. 243117 ◽  
Author(s):  
Tsukasa Torimoto ◽  
Ken-ichi Okazaki ◽  
Tomonori Kiyama ◽  
Kaori Hirahara ◽  
Nobuo Tanaka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document