Integrative treatment of anti-tumor/bone repair by combination of MoS2 nanosheets with 3D printed bioactive borosilicate glass scaffolds

2020 ◽  
Vol 396 ◽  
pp. 125081 ◽  
Author(s):  
Hui Wang ◽  
Xiangqiong Zeng ◽  
Libin Pang ◽  
Haihang Wang ◽  
Bocai Lin ◽  
...  
Author(s):  
Toshiyuki Kawai ◽  
Chi-chun Pan ◽  
Yaichiro Okuzu ◽  
Takayoshi Shimizu ◽  
Alexander Stahl ◽  
...  

2019 ◽  
Vol 84 ◽  
pp. 16-33 ◽  
Author(s):  
Lei Zhang ◽  
Guojing Yang ◽  
Blake N. Johnson ◽  
Xiaofeng Jia

2019 ◽  
Vol 22 (4) ◽  
pp. 1901065 ◽  
Author(s):  
Xibao Chen ◽  
Gang Chen ◽  
Gang Wang ◽  
Peizhi Zhu ◽  
Chunxia Gao

Author(s):  
Kenny Man ◽  
Mathieu Y. Brunet ◽  
Sophie Louth ◽  
Thomas E. Robinson ◽  
Maria Fernandez-Rhodes ◽  
...  

Extracellular Vesicles (EVs) are considered promising nanoscale therapeutics for bone regeneration. To date, EVs are typically procured from cells on 2D tissue culture plastic, an artificial environment that limits cell growth and does not replicate in situ biochemical or biophysical conditions. This study investigated the potential of 3D printed titanium scaffolds coated with hydroxyapatite to promote the therapeutic efficacy of osteoblast-derived EVs. Ti6Al4V titanium scaffolds with different pore sizes (500 and 1000 µm) and shapes (square and triangle) were fabricated by selective laser melting. A bone-mimetic nano-needle hydroxyapatite (nnHA) coating was then applied. EVs were procured from scaffold-cultured osteoblasts over 2 weeks and vesicle concentration was determined using the CD63 ELISA. Osteogenic differentiation of human bone marrow stromal cells (hBMSCs) following treatment with primed EVs was evaluated by assessing alkaline phosphatase activity, collagen production and calcium deposition. Triangle pore scaffolds significantly increased osteoblast mineralisation (1.5-fold) when compared to square architectures (P ≤ 0.001). Interestingly, EV yield was also significantly enhanced on these higher permeability structures (P ≤ 0.001), in particular (2.2-fold) for the larger pore structures (1000 µm). Furthermore osteoblast-derived EVs isolated from triangular pore scaffolds significantly increased hBMSCs mineralisation when compared to EVs acquired from square pore scaffolds (1.7-fold) and 2D culture (2.2-fold) (P ≤ 0.001). Coating with nnHA significantly improved osteoblast mineralisation (>2.6-fold) and EV production (4.5-fold) when compared to uncoated scaffolds (P ≤ 0.001). Together, these findings demonstrate the potential of harnessing bone-mimetic culture platforms to enhance the production of pro-regenerative EVs as an acellular tool for bone repair.


Author(s):  
Yichen Dou ◽  
Jinhui Huang ◽  
Xue Xia ◽  
Jiawei Wei ◽  
Qin Zou ◽  
...  

The ideal scaffold for bone repair should have the hierarchical pore structure and gradient degradation performance to satisfy the uniform adhesion and proliferation of cells in the scaffold at the...


2020 ◽  
Author(s):  
Michael Bouyer ◽  
Charlotte Garot ◽  
Paul Machillot ◽  
Julien Vollaire ◽  
Vincent Fitzpatrick ◽  
...  

Abstractthe reconstruction of large bone defects (12 cm3) remains a challenge for clinicians. We developed a new critical-size mandibular bone defect model on a mini-pig, close to human clinical issues. We analyzed the bone reconstruction obtained by a 3D printed scaffold made of clinical-grade PLA, coated with a polyelectrolyte film delivering an osteogenic bioactive molecule (BMP-2). We compared the results (CT-scan, μCT, histology) to the gold standard solution, bone autograft. We demonstrated that the dose of BMP-2 delivered from the scaffold significantly influenced the amount of regenerated bone and the repair kinetics, with a clear BMP-2 dose-dependence. Bone was homogeneously formed inside the scaffold without ectopic bone formation. The bone repair was as good as for the bone autograft. The BMP-2 doses applied in our study were reduced 20 to 75-fold compared to the commercial collagen sponges used in the current clinical applications, without any adverse effects. 3D printed PLA scaffolds loaded with reduced doses of BMP-2 can be a safe and simple solution for large bone defects faced in the clinic.


2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Yanhao Hou ◽  
Weiguang Wang ◽  
Paulo Jorge Da Silva Bartolo

Scaffolds, three-dimensional (3D) substrates providing appropriate mechanical support and biological environments for new tissue formation, are the most common approaches in tissue engineering. To improve scaffold properties such as mechanical properties, surface characteristics, biocompatibility and biodegradability, different types of fillers have been used reinforcing biocompatible and biodegradable polymers. This paper investigates and compares the mechanical and biological behaviors of 3D printed poly(ε-caprolactone) scaffolds reinforced with graphene (G) and graphene oxide (GO) at different concentrations. Results show that contrary to G which improves mechanical properties and enhances cell attachment and proliferation, GO seems to show some cytotoxicity, particular at high contents.


Author(s):  
Weida Zhuang ◽  
Genlan Ye ◽  
Jiachang Wu ◽  
Leyu Wang ◽  
Guofan Fang ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document