Covalently construction of poly(hexamethylene biguanide) as high-efficiency antibacterial coating for silicone rubber

2021 ◽  
Vol 412 ◽  
pp. 128707
Author(s):  
Wan Peng ◽  
Hua Yin ◽  
Peiming Liu ◽  
Jiangmei Peng ◽  
Jin Sun ◽  
...  
2021 ◽  
Vol 411 ◽  
pp. 125110
Author(s):  
Jiangmei Peng ◽  
Peiming Liu ◽  
Wan Peng ◽  
Jin Sun ◽  
Xiaohan Dong ◽  
...  

2008 ◽  
Vol 20 (4) ◽  
pp. 1390-1396 ◽  
Author(s):  
Olga Girshevitz ◽  
Yeshayahu Nitzan ◽  
Chaim N. Sukenik

2013 ◽  
Vol 664 ◽  
pp. 835-840
Author(s):  
Chil Chyuan Kuo ◽  
Chuan Ming Huang

Silicone rubber mold is regarded as an important method of reducing the cost and time to market in a new product development process. Commercial automatic vacuum machine is widely used to degas in the manufacturing of silicone rubber mold, but the cost of hardware is very expensive. A high efficiency degassing system is designed and implemented from regular vacuum machine. It is found that degassing process includes explosion phase, balance phase and convergence phase. The maximum saving in the degassing time is about 63.7%. The advantages of this system include reducing human error of operator, reducing noise and air pollutions derived from the vacuum pump.


Author(s):  
Yaning Dong ◽  
Li Liu ◽  
Jin Sun ◽  
Wan Peng ◽  
Xiaohan Dong ◽  
...  

Designi of a coating material with efficient bactericidal property to cope with bacterial associated infections is highly desirable for metallic implants and devices. Here, we report phosphonate/quaternary ammonium copolymers, p(DEMMP-co-TMAEMA),...


1988 ◽  
Vol 102 ◽  
pp. 41
Author(s):  
E. Silver ◽  
C. Hailey ◽  
S. Labov ◽  
N. Madden ◽  
D. Landis ◽  
...  

The merits of microcalorimetry below 1°K for high resolution spectroscopy has become widely recognized on theoretical grounds. By combining the high efficiency, broadband spectral sensitivity of traditional photoelectric detectors with the high resolution capabilities characteristic of dispersive spectrometers, the microcalorimeter could potentially revolutionize spectroscopic measurements of astrophysical and laboratory plasmas. In actuality, however, the performance of prototype instruments has fallen short of theoretical predictions and practical detectors are still unavailable for use as laboratory and space-based instruments. These issues are currently being addressed by the new collaborative initiative between LLNL, LBL, U.C.I., U.C.B., and U.C.D.. Microcalorimeters of various types are being developed and tested at temperatures of 1.4, 0.3, and 0.1°K. These include monolithic devices made from NTD Germanium and composite configurations using sapphire substrates with temperature sensors fabricated from NTD Germanium, evaporative films of Germanium-Gold alloy, or material with superconducting transition edges. A new approache to low noise pulse counting electronics has been developed that allows the ultimate speed of the device to be determined solely by the detector thermal response and geometry. Our laboratory studies of the thermal and resistive properties of these and other candidate materials should enable us to characterize the pulse shape and subsequently predict the ultimate performance. We are building a compact adiabatic demagnetization refrigerator for conveniently reaching 0.1°K in the laboratory and for use in future satellite-borne missions. A description of this instrument together with results from our most recent experiments will be presented.


Author(s):  
J. M. Cowley ◽  
R. Glaisher ◽  
J. A. Lin ◽  
H.-J. Ou

Some of the most important applications of STEM depend on the variety of imaging and diffraction made possible by the versatility of the detector system and the serial nature, of the image acquisition. A special detector system, previously described, has been added to our STEM instrument to allow us to take full advantage of this versatility. In this, the diffraction pattern in the detector plane may be formed on either of two phosphor screens, one with P47 (very fast) phosphor and the other with P20 (high efficiency) phosphor. The light from the phosphor is conveyed through a fiber-optic rod to an image intensifier and TV system and may be photographed, recorded on videotape, or stored digitally on a frame store. The P47 screen has a hole through it to allow electrons to enter a Gatan EELS spectrometer. Recently a modified SEM detector has been added so that high resolution (10Å) imaging with secondary electrons may be used in conjunction with other modes.


Author(s):  
K.M. Hones ◽  
P. Sheldon ◽  
B.G. Yacobi ◽  
A. Mason

There is increasing interest in growing epitaxial GaAs on Si substrates. Such a device structure would allow low-cost substrates to be used for high-efficiency cascade- junction solar cells. However, high-defect densities may result from the large lattice mismatch (∼4%) between the GaAs epilayer and the silicon substrate. These defects can act as nonradiative recombination centers that can degrade the optical and electrical properties of the epitaxially grown GaAs. For this reason, it is important to optimize epilayer growth conditions in order to minimize resulting dislocation densities. The purpose of this paper is to provide an indication of the quality of the epitaxially grown GaAs layers by using transmission electron microscopy (TEM) to examine dislocation type and density as a function of various growth conditions. In this study an intermediate Ge layer was used to avoid nucleation difficulties observed for GaAs growth directly on Si substrates. GaAs/Ge epilayers were grown by molecular beam epitaxy (MBE) on Si substrates in a manner similar to that described previously.


Sign in / Sign up

Export Citation Format

Share Document