Remotely-activatable extracellular matrix-mimetic hydrogel promotes physiological bone mineralization for enhanced cranial defect healing

2021 ◽  
pp. 133382
Author(s):  
Lu Tan ◽  
Yan Hu ◽  
Menghuan Li ◽  
Yuchen Zhang ◽  
Chencheng Xue ◽  
...  
2001 ◽  
Vol 12 (4) ◽  
pp. 401-404 ◽  
Author(s):  
Arun K. Gosain ◽  
Liansheng Song ◽  
Pierong Yu ◽  
Babak J. Mehrara ◽  
Christopher Y. Maeda ◽  
...  

2020 ◽  
Vol 8 (18) ◽  
pp. 4067-4079
Author(s):  
Yaling Yu ◽  
Haomin Cui ◽  
Cheng Zhang ◽  
Demin Zhang ◽  
Jun Yin ◽  
...  

Decellularized nail bed scaffolds (dNB) derived from amputated patients polarize macrophages towards M2 phenotype through JAK2/STAT3 signaling pathway, thus inducing osteogenic differentiation of BMSCs to facilitate calvarial defect healing.


2107 ◽  
Vol 33 ◽  
pp. 130-142 ◽  
Author(s):  
GM Cunniffe ◽  
◽  
PJ Díaz-Payno ◽  
JS Ramey ◽  
OR Mahon ◽  
...  

2004 ◽  
Vol 165 (5) ◽  
pp. 625-630 ◽  
Author(s):  
Monzur Murshed ◽  
Thorsten Schinke ◽  
Marc D. McKee ◽  
Gerard Karsenty

Extracellular matrix mineralization (ECMM) is a physiologic process in the skeleton and in teeth and a pathologic one in other organs. The molecular mechanisms controlling ECMM are poorly understood. Inactivation of Matrix gla protein (Mgp) revealed that MGP is an inhibitor of ECMM. The fact that MGP is present in the general circulation raises the question of whether ECMM is regulated locally and/or systemically. Here, we show that restoration of Mgp expression in arteries rescues the arterial mineralization phenotype of Mgp−/− mice, whereas its expression in osteoblasts prevents bone mineralization. In contrast, raising the serum level of MGP does not affect mineralization of any ECM. In vivo mutagenesis experiments show that the anti-ECMM function of MGP requires four amino acids which are γ-carboxylated (gla residues). Surprisingly, another gla protein specific to bone and teeth (osteocalcin) does not display the anti-ECMM function of MGP. These results indicate that ECMM is regulated locally in animals and uncover a striking disparity of function between proteins sharing identical structural motifs.


2021 ◽  
Vol 22 (11) ◽  
pp. 5665
Author(s):  
Elise Aasebø ◽  
Annette K. Brenner ◽  
Maria Hernandez-Valladares ◽  
Even Birkeland ◽  
Frode S. Berven ◽  
...  

Mesenchymal stem cells (MSCs) can differentiate into osteoblasts, and therapeutic targeting of these cells is considered both for malignant and non-malignant diseases. We analyzed global proteomic profiles for osteoblasts derived from ten and MSCs from six healthy individuals, and we quantified 5465 proteins for the osteoblasts and 5420 proteins for the MSCs. There was a large overlap in the profiles for the two cell types; 156 proteins were quantified only in osteoblasts and 111 proteins only for the MSCs. The osteoblast-specific proteins included several extracellular matrix proteins and a network including 27 proteins that influence intracellular signaling (Wnt/Notch/Bone morphogenic protein pathways) and bone mineralization. The osteoblasts and MSCs showed only minor age- and sex-dependent proteomic differences. Finally, the osteoblast and MSC proteomic profiles were altered by ex vivo culture in serum-free media. We conclude that although the proteomic profiles of osteoblasts and MSCs show many similarities, we identified several osteoblast-specific extracellular matrix proteins and an osteoblast-specific intracellular signaling network. Therapeutic targeting of these proteins will possibly have minor effects on MSCs. Furthermore, the use of ex vivo cultured osteoblasts/MSCs in clinical medicine will require careful standardization of the ex vivo handling of the cells.


Author(s):  
L. Terracio ◽  
A. Dewey ◽  
K. Rubin ◽  
T.K. Borg

The recognition and interaction of cells with the extracellular matrix (ECM) effects the normal physiology as well as the pathology of all multicellular organisms. These interactions have been shown to influence the growth, development, and maintenance of normal tissue function. In previous studies, we have shown that neonatal cardiac myocytes specifically interacts with a variety of ECM components including fibronectin, laminin, and collagens I, III and IV. Culturing neonatal myocytes on laminin and collagen IV induces an increased rate of both cell spreading and sarcomerogenesis.


Author(s):  
J. Roemer ◽  
S.R. Simon

We are developing an in vitro interstitial extracellular matrix (ECM) system for study of inflammatory cell migration. Falcon brand Cyclopore membrane inserts of various pore sizes are used as a support substrate for production of ECM by R22 rat aortic smooth muscle cells. Under specific culture conditions these cells produce a highly insoluble matrix consisting of typical interstitial ECM components, i.e.: types I and III collagen, elastin, proteoglycans and fibronectin.


Author(s):  
Barry Bonnell ◽  
Carolyn Larabell ◽  
Douglas Chandler

Eggs of many species including those of echinoderms, amphibians and mammals exhibit an extensive extracellular matrix (ECM) that is important both in the reception of sperm and in providing a block to polyspermy after fertilization.In sea urchin eggs there are two distinctive coats, the vitelline layer which contains glycoprotein sperm receptors and the jelly layer that contains fucose sulfate glycoconjugates which trigger the acrosomal reaction and small peptides which act as chemoattractants for sperm. The vitelline layer (VL), as visualized by quick-freezing, deep-etching, and rotary-shadowing (QFDE-RS), is a fishnet-like structure, anchored to the plasma membrane by short posts. Orbiting above the VL are horizontal filaments which are thought to anchor the thicker jelly layer to the egg. Upon fertilization, the VL elevates and is transformed by cortical granule secretions into the fertilization envelope (FE). The rounded casts of microvilli in the VL are transformed into angular peaks and the envelope becomes coated inside and out with sheets of paracrystalline protein having a quasi-two dimensional crystalline structure.


2019 ◽  
Vol 47 (5) ◽  
pp. 1543-1555 ◽  
Author(s):  
Maurizio Mongiat ◽  
Simone Buraschi ◽  
Eva Andreuzzi ◽  
Thomas Neill ◽  
Renato V. Iozzo

Abstract The extracellular matrix is a network of secreted macromolecules that provides a harmonious meshwork for the growth and homeostatic development of organisms. It conveys multiple signaling cascades affecting specific surface receptors that impact cell behavior. During cancer growth, this bioactive meshwork is remodeled and enriched in newly formed blood vessels, which provide nutrients and oxygen to the growing tumor cells. Remodeling of the tumor microenvironment leads to the formation of bioactive fragments that may have a distinct function from their parent molecules, and the balance among these factors directly influence cell viability and metastatic progression. Indeed, the matrix acts as a gatekeeper by regulating the access of cancer cells to nutrients. Here, we will critically evaluate the role of selected matrix constituents in regulating tumor angiogenesis and provide up-to-date information concerning their primary mechanisms of action.


Sign in / Sign up

Export Citation Format

Share Document