scholarly journals Self-Organized Nuclear Positioning Synchronizes the Cell Cycle in Drosophila Embryos

Cell ◽  
2019 ◽  
Vol 177 (4) ◽  
pp. 925-941.e17 ◽  
Author(s):  
Victoria E. Deneke ◽  
Alberto Puliafito ◽  
Daniel Krueger ◽  
Avaneesh V. Narla ◽  
Alessandro De Simone ◽  
...  
Development ◽  
1995 ◽  
Vol 121 (9) ◽  
pp. 3035-3043 ◽  
Author(s):  
S.T. Bissen

The identifiable cells of leech embryos exhibit characteristic differences in the timing of cell division. To elucidate the mechanisms underlying these cell-specific differences in cell cycle timing, the leech cdc25 gene was isolated because Cdc25 phosphatase regulates the asynchronous cell divisions of postblastoderm Drosophila embryos. Examination of the distribution of cdc25 RNA and the zygotic expression of cdc25 in identified cells of leech embryos revealed lineage-dependent mechanisms of regulation. The early blastomeres, macromeres and teloblasts have steady levels of maternal cdc25 RNA throughout their cell cycles. The levels of cdc25 RNA remain constant throughout the cell cycles of the segmental founder cells, but the majority of these transcripts are zygotically produced. Cdc25 RNA levels fluctuate during the cell cycles of the micromeres. The levels peak during early G2, due to a burst of zygotic transcription, and then decline as the cell cycles progress. These data suggest that cells of different lineages employ different strategies of cell cycle control.


2008 ◽  
Vol 19 (1) ◽  
pp. 368-377 ◽  
Author(s):  
Christiane Wiese

γ-Tubulin is an indispensable component of the animal centrosome and is required for proper microtubule organization. Within the cell, γ-tubulin exists in a multiprotein complex containing between two (some yeasts) and six or more (metazoa) additional highly conserved proteins named gamma ring proteins (Grips) or gamma complex proteins (GCPs). γ-Tubulin containing complexes isolated from Xenopus eggs or Drosophila embryos appear ring-shaped and have therefore been named the γ-tubulin ring complex (γTuRC). Curiously, many organisms (including humans) have two distinct γ-tubulin genes. In Drosophila, where the two γ-tubulin isotypes have been studied most extensively, the γ-tubulin genes are developmentally regulated: the “maternal” γ-tubulin isotype (named γTub37CD according to its location on the genetic map) is expressed in the ovary and is deposited in the egg, where it is thought to orchestrate the meiotic and early embryonic cleavages. The second γ-tubulin isotype (γTub23C) is ubiquitously expressed and persists in most of the cells of the adult fly. In those rare cases where both γ-tubulins coexist in the same cell, they show distinct subcellular distributions and cell-cycle-dependent changes: γTub37CD mainly localizes to the centrosome, where its levels vary only slightly with the cell cycle. In contrast, the level of γTub23C at the centrosome increases at the beginning of mitosis, and γTub23C also associates with spindle pole microtubules. Here, we show that γTub23C forms discrete complexes that closely resemble the complexes formed by γTub37CD. Surprisingly, however, γTub23C associates with a distinct, longer splice variant of Dgrip84. This may reflect a role for Dgrip84 in regulating the activity and/or the location of the γ-tubulin complexes formed with γTub37CD and γTub23C.


Development ◽  
1990 ◽  
Vol 110 (4) ◽  
pp. 1249-1261 ◽  
Author(s):  
J.W. Raff ◽  
W.G. Whitfield ◽  
D.M. Glover

We demonstrate that two independent mechanisms act on maternally derived cyclin B transcripts to concentrate the transcripts at the posterior pole of the Drosophila oocyte and at the cortex of the syncytial embryo. The cortical accumulation occurs because the cyclin B transcript is concentrated around nuclei and comigrates with them to the cortex. The perinuclear localisation of the transcript is blocked by inhibitors of microtubule polymerisation and the transcript colocalises with microtubular structures during the cell cycle, suggesting that the transcript is associated either directly or indirectly with microtubules. Neither microtubules nor actin filaments are required to maintain the posterior concentration of cyclin B transcripts. Instead, this seems to depend on the association of the transcripts with a component of the posterior cytoplasm. The distribution pattern of the transcript at the posterior pole throughout embryogenesis and in a variety of mutant embryos suggests that this component is associated with polar granules.


1993 ◽  
Vol 105 (3) ◽  
pp. 711-720 ◽  
Author(s):  
G. Maldonado-Codina ◽  
S. Llamazares ◽  
D.M. Glover

Cells of Drosophila embryos that are subjected to a 37 degrees C temperature shock whilst undergoing the S-phase of cell cycle 14 arrest with their microtubules in an interphase-like state, and with nuclei showing unusual chromatin condensation. They do not recover from this state within a 30 minute period even though extensive gastrulation movements can occur. Cells of embryos heat shocked in G2-phase are delayed in interphase with high levels of cyclins A and B. Within ten minutes recovery from heat shock, cells enter mitosis throughout the embryo. The degradation of the mitotic cyclins A and B in these synchronised mitotic domains does not follow the normal timing, but is delayed. These findings point to a need for caution when interpreting experiments that use the heat shock promoter to study the expression of cell cycle control genes in Drosophila.


2011 ◽  
Vol 183-185 ◽  
pp. 93-98
Author(s):  
Rui He ◽  
Chun Mei Lin

This paper proposes an evolutionary self-organized clustering method of genes based on undirected graph expression. In this method, we use the vertices of the graph to represent genes, and regard the weight between two vertices as similarity measurement of two genes. Thus, the similarities among genes can be extracted according to the space feature of graph with immune evolutionary method. To demonstrate the effectiveness of the proposed method, the method is tested on yeast cell cycle expression dataset; the results suggest that this method is capable of clustering genes.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Zhe Yang ◽  
Hongcun Zhu ◽  
Kakit Kong ◽  
Xiaoxuan Wu ◽  
Jiayi Chen ◽  
...  

It has been suggested that Staufen (Stau) is key in controlling the variability of the posterior boundary of the Hb anterior domain (xHb). However, the mechanism that underlies this control is elusive. Here, we quantified the dynamic 3D expression of segmentation genes in Drosophila embryos. With improved control of measurement errors, we show that the xHb of stau– mutants reproducibly moves posteriorly by 10% of the embryo length (EL) to the wild type (WT) position in the nuclear cycle (nc) 14, and that its variability over short time windows is comparable to that of the WT. Moreover, for stau– mutants, the upstream Bicoid (Bcd) gradients show equivalent relative intensity noise to that of the WT in nc12–nc14, and the downstream Even-skipped (Eve) and cephalic furrow (CF) show the same positional errors as these factors in WT. Our results indicate that threshold-dependent activation and self-organized filtering are not mutually exclusive and could both be implemented in early Drosophila embryogenesis.


1995 ◽  
Vol 108 (4) ◽  
pp. 1407-1418 ◽  
Author(s):  
R. Kellum ◽  
J.W. Raff ◽  
B.M. Alberts

Heterochromatin protein 1 (HP1) was initially discovered as a protein that is associated with the heterochromatin at the chromocenter of polytene chromosomes in Drosophila larval salivary glands. In this paper we investigate the localization of heterochromatin protein 1 in the diploid nuclei of Drosophila embryos. We focus on its association with the interphase heterochromatin in fixed embryos before and during cycle 14, the developmental time at which heterochromatin becomes most conspicuous, and also follow its localization during mitosis. The GAGA transcription factor was recently shown to be localized at sequences within alpha-heterochromatin in pre-cycle 14 embryos, and an antibody against this protein serves as a convenient marker for these sequences. We find an enrichment of heterochromatin protein 1 in the intensely DAPI-staining regions near the apical surface of nuclear cycle 10 embryos. At this stage GAGA factor is localized into punctate structures in this same region. This enrichment for HP1 is markedly increased during nuclear cycle 14. Surprisingly, whereas GAGA factor retains its association with the heterochromatin throughout the cell cycle, a significant fraction of HP1 is dispersed throughout the spindle around the segregating chromosomes during mitosis. This dispersed pool of heterochromatin protein 1 was observed during mitosis in both early and late Drosophila embryos and in an analysis of a bacterially produced 6x histidine-heterochromatin protein 1 fusion protein injected into living Drosophila embryos. When Drosophila tissue culture cells were prepared by a method which removes soluble protein and avoids fixation of the mitotic chromosomes, an enrichment for heterochromatin protein 1 in the heterochromatin of the chromosomes was discovered also.


Sign in / Sign up

Export Citation Format

Share Document