scholarly journals Fatty acids impact sarcomere integrity through myristoylation and ER homeostasis

Cell Reports ◽  
2021 ◽  
Vol 36 (7) ◽  
pp. 109539
Author(s):  
Hongyun Tang ◽  
Mingxue Cui ◽  
Min Han
Keyword(s):  
2019 ◽  
Vol 218 (4) ◽  
pp. 1319-1334 ◽  
Author(s):  
Hanaa Hariri ◽  
Natalie Speer ◽  
Jade Bowerman ◽  
Sean Rogers ◽  
Gang Fu ◽  
...  

Lipid droplets (LDs) serve as cytoplasmic reservoirs for energy-rich fatty acids (FAs) stored in the form of triacylglycerides (TAGs). During nutrient stress, yeast LDs cluster adjacent to the vacuole/lysosome, but how this LD accumulation is coordinated remains poorly understood. The ER protein Mdm1 is a molecular tether that plays a role in clustering LDs during nutrient depletion, but its mechanism of function remains unknown. Here, we show that Mdm1 associates with LDs through its hydrophobic N-terminal region, which is sufficient to demarcate sites for LD budding. Mdm1 binds FAs via its Phox-associated domain and coenriches with fatty acyl–coenzyme A ligase Faa1 at LD bud sites. Consistent with this, loss of MDM1 perturbs free FA activation and Dga1-dependent synthesis of TAGs, elevating the cellular FA level, which perturbs ER morphology and sensitizes yeast to FA-induced lipotoxicity. We propose that Mdm1 coordinates FA activation adjacent to the vacuole to promote LD production in response to stress, thus maintaining ER homeostasis.


2006 ◽  
Vol 291 (2) ◽  
pp. E275-E281 ◽  
Author(s):  
Yuren Wei ◽  
Dong Wang ◽  
Farran Topczewski ◽  
Michael J. Pagliassotti

Accumulation of lipids in nonadipose tissues can lead to cell dysfunction and cell death, a phenomenon known as lipotoxicity. However, the signaling pathways and mechanisms linking lipid accumulation to cell death are poorly understood. The present study examined the hypothesis that saturated fatty acids disrupt endoplasmic reticulum (ER) homeostasis and promote apoptosis in liver cells via accumulation of ceramide. H4IIE liver cells were exposed to varying concentrations of saturated (palmitate or stearate) or unsaturated (oleate or linoleate) fatty acids. ER homeostasis was monitored using markers of the ER stress response pathway, including phosphorylation of IRE1α and eIF2α, splicing of XBP1 mRNA, and expression of molecular chaperone (e.g., GRP78) and proapoptotic (CCAAT/enhancer-binding protein homologous protein) genes. Apoptosis was monitored using caspase activity and DNA laddering. Palmitate and stearate induced ER stress, caspase activity, and DNA laddering. Inhibition of caspase activation prevented DNA laddering. Unsaturated fatty acids did not induce ER stress or apoptosis. Saturated fatty acids increased ceramide concentration; however, inhibition of de novo ceramide synthesis did not prevent saturated fatty acid-induced ER stress and apoptosis. Unsaturated fatty acids rescued palmitate-induced ER stress and apoptosis. These data demonstrate that saturated fatty acids disrupt ER homeostasis and induce apoptosis in liver cells via mechanisms that do not involve ceramide accumulation.


2020 ◽  
Author(s):  
Sanchari Datta ◽  
Jade Bowerman ◽  
Hanaa Hariri ◽  
Rupali Ugrankar ◽  
Kaitlyn M. Eckert ◽  
...  

AbstractFatty acids (FAs) are central cellular metabolites that contribute to lipid synthesis, and can be stored or harvested for metabolic energy. Dysregulation in FA processing and storage causes toxic FA accumulation or altered membrane compositions and contributes to metabolic and neurological disorders. Saturated lipids are particularly detrimental to cells, but how lipid saturation levels are maintained remains poorly understood. Here, we identify the cerebellar ataxia SCAR20-associated protein Snx14, an endoplasmic reticulum (ER)-lipid droplet (LD) tethering protein, as a novel factor required to maintain the lipid saturation balance of cell membranes. We show that SNX14KO cells and SCAR20 disease patient-derived cells are hypersensitive to saturated FA (SFA)-mediated lipotoxic cell death that compromises ER integrity. Using APEX2-based proximity labeling, we reveal the protein composition of Snx14-associated ER-LD contacts and define a functional interaction between Snx14 and Δ-9 FA desaturase SCD1. Lipidomic profiling reveals that SNX14KO cells increase membrane lipid saturation following exposure to palmitate, phenocopying cells with reduced SCD1 activity. In line with this, SNX14KO cells manifest delayed FA processing and lipotoxicity, which can be rescued by SCD1 over-expression. Altogether these mechanistic insights reveal a role for Snx14 in FA and ER homeostasis, defects in which may underlie the neuropathology of SCAR20.Significance StatementSCAR20 disease is an autosomal recessive spinocerebellar ataxia primarily affecting children, and results from loss-of-function mutations in the SNX14 gene. Snx14 is an endoplasmic reticulum (ER)-localized protein that localizes to ER-lipid droplet (LD) contacts and promotes LD biogenesis following exogenous FA treatment, but why Snx14 loss causes SCAR20 is unclear. Here, we demonstrate that following exposure to saturated fatty acids, Snx14-deficient cells have defective ER homeostasis and altered lipid saturation profiles. We reveal a functional interaction between Snx14 and fatty acid (FA) desaturase SCD1. Lipidomics shows Snx14-deficient cells contain elevated saturated lipids, closely mirroring SCD1-defective cells. Furthermore, SCD1 over-expression can rescue Snx14 loss. We propose that Snx14 maintains cellular lipid homeostasis, the loss of which underlies the cellular basis for SCAR20 disease.


1979 ◽  
Vol 7 (4) ◽  
pp. 813-814
Author(s):  
J. L. HARWOOD
Keyword(s):  

2020 ◽  
Author(s):  
Victorio Jauregui Matos ◽  
Denisse Alequín Torres ◽  
Néstor M. Carballeira ◽  
Rafael Balaña-Fouce ◽  
David J Sanabria Rios ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document