scholarly journals Persistent mRNA localization defects and cell death in ALS neurons caused by transient cellular stress

Cell Reports ◽  
2021 ◽  
Vol 36 (10) ◽  
pp. 109685
Author(s):  
Sebastian Markmiller ◽  
Shashank Sathe ◽  
Kari L. Server ◽  
Thai B. Nguyen ◽  
Amit Fulzele ◽  
...  
2020 ◽  
Author(s):  
Sebastian Markmiller ◽  
Shashank Sathe ◽  
Kari L. Server ◽  
Thai B. Nguyen ◽  
Amit Fulzele ◽  
...  

Toxins ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 506
Author(s):  
Leyberth José Fernández-Herrera ◽  
Christine Johanna Band-Schmidt ◽  
Tania Zenteno-Savín ◽  
Ignacio Leyva-Valencia ◽  
Claudia Judith Hernández-Guerrero ◽  
...  

Allelopathy between phytoplankton species can promote cellular stress and programmed cell death (PCD). The raphidophyte Chattonella marina var. marina, and the dinoflagellates Margalefidinium polykrikoides and Gymnodinium impudicum have allelopathic effects on Gymnodinium catenatum; however, the physiological mechanisms are unknown. We evaluated whether the allelopathic effect promotes cellular stress and activates PCD in G. catenatum. Cultures of G. catenatum were exposed to cell-free media of C. marina var. marina, M. polykrikoides and G. impudicum. The mortality, superoxide radical (O2●−) production, thiobarbituric acid reactive substances (TBARS) levels, superoxide dismutase (SOD) activity, protein content, and caspase-3 activity were quantified. Mortality (between 57 and 79%) was registered in G. catenatum after exposure to cell-free media of the three species. The maximal O2●− production occurred with C. marina var. marina cell-free media. The highest TBARS levels and SOD activity in G. catenatum were recorded with cell-free media from G. impudicum. The highest protein content was recorded with cell-free media from M. polykrikoides. All cell-free media caused an increase in the activity of caspase-3. These results indicate that the allelopathic effect in G. catenatum promotes cell stress and caspase-3 activation, as a signal for the induction of programmed cell death.


Pancreatology ◽  
2013 ◽  
Vol 13 (4) ◽  
pp. e4
Author(s):  
M. Luaces-Regueira ◽  
M. Castiñeira-Alvariño ◽  
J.E. Domínguez-Muñoz

2014 ◽  
Vol 04 (01) ◽  
pp. 28-34 ◽  
Author(s):  
Orsolya Kapuy ◽  
Beáta Lizák ◽  
Ibolya Stiller ◽  
Gábor Bánhegyi

2018 ◽  
Vol 24 (27) ◽  
pp. 3176-3183 ◽  
Author(s):  
Rohit Gundamaraju ◽  
Ravichandra Vemuri ◽  
Wai Chin Chong ◽  
Dominic P. Geraghty ◽  
Rajaraman Eri

Initiating anti-apoptotic signaling or triggering cell death depends to a great extent on the nature or source of cellular stress and cell type. Interplay between each stress response eventually determines the fate of stressed cell. Numerous factors induce cell death by a number of pathways including apoptosis, autophagy and necrosis. Not surprisingly, some of the pathways are interrelated to each other through a mediator that could articulate the entire mechanism. The present review attempts to consolidate all the pathways included in intrinsic cellular stress such as oxidative stress and autophagy, endoplasmic reticular stress (ERS) and mitophagy and apoptosis as fate in cell stress. These stress responses are a hallmark of numerous diseases including neurodegenerative diseases, diabetes and cancer. Understanding the cross-talk between different intrinsic cell stress responses will help to develop new therapeutic targets and hence lead to the development of new therapeutics.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 614 ◽  
Author(s):  
Gabriella D’Orazi ◽  
Mara Cirone

The capability of cancer cells to manage stress induced by hypoxia, nutrient shortage, acidosis, redox imbalance, loss of calcium homeostasis and exposure to drugs is a key factor to ensure cancer survival and chemoresistance. Among the protective mechanisms utilized by cancer cells to cope with stress a pivotal role is played by the activation of heat shock proteins (HSP) response, anti-oxidant response induced by nuclear factor erythroid 2-related factor 2 (NRF2), the hypoxia-inducible factor-1 (HIF-1), the unfolded protein response (UPR) and autophagy, cellular processes strictly interconnected. However, depending on the type, intensity or duration of cellular stress, the balance between pro-survival and pro-death pathways may change, and cell survival may be shifted into cell death. Mutations of p53 (mutp53), occurring in more than 50% of human cancers, may confer oncogenic gain-of-function (GOF) to the protein, mainly due to its stabilization and interaction with the above reported cellular pathways that help cancer cells to adapt to stress. This review will focus on the interplay of mutp53 with HSPs, NRF2, UPR, and autophagy and discuss how the manipulation of these interconnected processes may tip the balance towards cell death or survival, particularly in response to therapies.


2011 ◽  
Vol 9 (12) ◽  
pp. 1708-1717 ◽  
Author(s):  
Ni Zeng ◽  
Yang Li ◽  
Lina He ◽  
Xiaoling Xu ◽  
Vivian Galicia ◽  
...  
Keyword(s):  

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 551-551 ◽  
Author(s):  
Martin Felices ◽  
Alexander Lenvik ◽  
Sami Chu ◽  
Ron McElmurry ◽  
Sarah Cooley ◽  
...  

Abstract Natural Killer (NK) cells represent an exciting immunotherapeutic approach to treat cancer. We have shown that in vivo expansion and activation of donor NK cells supported by administration of IL-2 induces remission in patients with refractory AML. Recent clinical studies by our group have shown that IL-15 is superior to IL-2 to support NK cell persistence 14 days after adoptive transfer. However, only 36% of patients treated with 12 consecutive days of IL-15 had NK cell expansion to the level of ≥100 donor derived NK cells/µL blood compared to 10% in subjects treated with IL-2 (p=0.02). This leads us to conclude that we might not know the optimal route and interval to administer in vivo IL-15. We hypothesized that daily uninterrupted IL-15 dosing could lead to exhaustion or NK cellular stress. Therefore we designed an in vitro model system in which enriched NK cells are treated with three 3-day cycles of continuous IL-15 (IL-15cont) or were rested with a "gap" (skipping the middle cycle [IL-15gap]) before returning to the last cycle of IL-15. IL-15cont treatment yielded more proliferation and higher cell numbers compared to IL-15gap (4.8±0.44 vs. 1.9±0.26 million cells/ml, p < 0.0001) when cells were analyzed at the end of the three cycles (on day 9, where all in vitro measurements were taken). However, NK cell death, measured by flow cytometry, in the IL-15cont group was higher (18.9±2.2 vs 14.9±1.7 % cell death, p = 0.035) and this group also had an enrichment in genes involved in cell cycle checkpoint/ arrest, perhaps indicating more cellular stress in the IL-15cont. In an in vitro flow cytometric functional assay, the IL-15cont group had decreased activation when compared to the IL-15 gap group against K562 targets (43.6±2.1 vs 55.6±2.7 % CD107a [degranulation], p < 0.0001; 1.9±0.41 vs 7.1±0.93 % IFNg [inflammatory cytokine production], p = 0.0055). The decrease in NK cell activation correlated with a strong decrease in tumor target killing in an in vitro chromium release assay (Figure 1A) measuring killing of acute promyelocytic leukemia (HL-60) cell targets, in which the IL-15cont NK cells were potently outperformed by the IL-15gap cells (6.4±2.6 vs 51.5±4.8 % killing at 2.5:1 effector:target ratio, p < 0.0001). We used an in vivo xenogeneic model of AML, where conditioned NSG (NOD scid gamma) mice are engrafted with HL-60luc tumor targets 3 days prior to infusion with nothing, IL-15cont or IL-15gap human NK cells prepared within our 9 day culture system. Only the IL-15gap NK group mediated statistically significant tumor control when compared to tumor alone at two weeks following NK cell infusion (Figure 1B). To probe deeper into the functional defect we evaluated signaling after these treatments and noted decreased phosphorylation of several proteins in the IL-15cont group. These data led us to explore proteins involved in metabolism and we noted that CPT1A, a critical enzyme involved in fatty acid oxidation (FAO), was strongly increased in the IL-15gap treated NK cells (protein MFI of 15,759±2,603 [IL-15gap] vs 5,273±744 [IL-15cont], p = 0.009). Metabolic analysis using a Seahorse XFe24 analyzer showed an increased mitochondrial spare respiratory capacity (SRC) in the IL-15gap group, denoting better capability of the IL-15gap NK cells to respond to energetic demands (Figure 1C). In a separate experiment the groups were treated with etomoxir to inhibit CPT1A, and the SRC phenotype was reversed, with the IL-15gap group containing lower SRC than the IL-15cont group. To test these findings in a functional assay we repeated the IL-15cont treatment in combination with rapamycin, which can induce CPT1A through inhibition of mTORC1, and saw restoration of function to levels similar to IL-15gap (40.8±2.0 vs 49.3±2.9 % CD107a in the IL-15cont vs IL-15cont + rapamycin, p = 0.005; 2.4±0.47 vs 4.8±1.0 % IFNg in the IL-15cont vs IL-15cont + rapamycin, p = 0.03). These data indicate that NK cell functional exhaustion via continuous IL-15 signaling is mediated by a decrease in FAO. Intermittent IL-15 dosing or altering metabolism through other mechanisms may overcome this competition. These findings could impact ongoing clinical trials through simple alterations in dosing strategies in order to minimize NK cell exhaustion in the immunotherapeutic setting. Disclosures Cooley: Fate Therapeutics: Research Funding. Miller:Oxis Biotech: Consultancy, Other: SAB; Fate Therapeutics: Consultancy, Research Funding.


eNeuro ◽  
2016 ◽  
Vol 3 (2) ◽  
pp. ENEURO.0047-16.2016 ◽  
Author(s):  
Tommi Anttonen ◽  
Anni Herranen ◽  
Jussi Virkkala ◽  
Anna Kirjavainen ◽  
Pinja Elomaa ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document