scholarly journals Temperature transformation of blended magnesium potassium phosphate cement binders

2021 ◽  
Vol 141 ◽  
pp. 106332
Author(s):  
Laura J. Gardner ◽  
Sam A. Walling ◽  
Claire L. Corkhill ◽  
Susan A. Bernal ◽  
Valentin Lejeune ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2073
Author(s):  
Qiubai Deng ◽  
Zhenyu Lai ◽  
Rui Xiao ◽  
Jie Wu ◽  
Mengliang Liu ◽  
...  

Waste glass is a bulk solid waste, and its utilization is of great consequence for environmental protection; the application of waste glass to magnesium phosphate cement can also play a prominent role in its recycling. The purpose of this study is to evaluate the effect of glass powder (GP) on the mechanical and working properties of magnesium potassium phosphate cement (MKPC). Moreover, a 40mm × 40mm × 40mm mold was used in this experiment, the workability, setting time, strength, hydration heat release, porosity, and microstructure of the specimens were evaluated. The results indicated that the addition of glass powder prolonged the setting time of MKPC, reduced the workability of the matrix, and effectively lowered the hydration heat of the MKPC. Compared to an M/P ratio (MgO/KH2PO4 mass ratio) of 1:1, the workability of the MKPC with M/P ratios of 2:1 and 3:1 was reduced by 1% and 2.1%, respectively, and the peak hydration temperatures were reduced by 0.5% and 14.6%, respectively. The compressive strength of MKPC increased with an increase in the glass powder content at the M/P ratio of 1:1, and the addition of glass powder reduced the porosity of the matrix, effectively increased the yield of struvite-K, and affected the morphology of the hydration products. With an increase in the M/P ratio, the struvite-K content decreased, many tiny pores were more prevalent on the surface of the matrix, and the bonding integrity between the MKPC was weakened, thereby reducing the compressive strength of the matrix. At less than 40 wt.% glass powder content, the performance of MKPC improved at an M/P ratio of 1:1. In general, the addition of glass powders improved the mechanical properties of MKPC and reduced the heat of hydration.


2020 ◽  
Author(s):  
Changtian Gong ◽  
Shuo Fang ◽  
Kezhou Xia ◽  
Jingteng Chen ◽  
Liangyu Guo ◽  
...  

Abstract Incorporating bioactive substances into synthetic bioceramic scaffolds is challenging. In this work, oxygen-carboxymethyl chitosan (O-CMC), a natural biopolymer that is nontoxic, biodegradable and biocompatible, was introduced into magnesium potassium phosphate cement (K-struvite) to enhance its mechanical properties and cytocompatibility. This study aimed to develop O-CMC/magnesium potassium phosphate composite bone cement (OMPC), thereby combining the optimum bioactivity of O-CMC with the extraordinary self-setting properties and mechanical intensity of the K-struvite. Our results indicated that O-CMC incorporation increased the compressive strength and setting time of K-struvite and decreased its porosity and pH value. Furthermore, OMPC scaffolds remarkably improved the proliferation, adhesion and osteogenesis related differentiation of MC3T3-E1 cells. Therefore, O-CMC introduced suitable physicochemical properties to K-struvite and enhanced its cytocompatibility for use in bone regeneration.


2011 ◽  
Vol 117-119 ◽  
pp. 1080-1083 ◽  
Author(s):  
Bao Guo Ma ◽  
Jing Ran Wang ◽  
Xiang Guo Li

Solidification / stabilization (S/S) is a popular method for treating solid wastes containing heavy metals. In recent years, it shows positive results of magnesium potassium phosphate cement as stabilizing agent. In the work, the influence of heavy metal Cu、Zn and Pb on magnesium phosphate cement and the leaching behavior of magnesium phosphate cement were studied. Two proportions of cements were employed with hard burned magnesia and potassium phosphate. The hydration products were analyzed by XRD showing that: Cu、Zn and Pb would not take on obvious effect during magnesium phosphate cement hydration process. Leaching toxicity tests showed that: Cu、Zn and Pb were immobilized within cement hydration products through physical fixation, adsorption mechanisms, and the results were far lower than that of the National Standard in China.


2021 ◽  
Vol 150 ◽  
pp. 106608
Author(s):  
Céline Cau Dit Coumes ◽  
Angélique Rousselet ◽  
Biwan Xu ◽  
Cyrille Albert Mercier ◽  
Sandrine Gauffinet

Sign in / Sign up

Export Citation Format

Share Document