Structure and thermal properties of heat treated plasma sprayed ceria–yttria co-stabilized zirconia coatings

2010 ◽  
Vol 36 (3) ◽  
pp. 961-968 ◽  
Author(s):  
Giovanni Di Girolamo ◽  
Caterina Blasi ◽  
Monica Schioppa ◽  
Leander Tapfer
2020 ◽  
Vol 20 (1) ◽  
pp. 524-529 ◽  
Author(s):  
Byeong-Hong Jeong ◽  
Sang-Mi Park ◽  
Woo-Sik Hwang ◽  
Kyung-Hwan Hyun ◽  
Yun-Ok Park ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 643
Author(s):  
Xiaoyu Wu ◽  
Shufeng Xie ◽  
Kangwei Xu ◽  
Lei Huang ◽  
Daling Wei ◽  
...  

Burning loss of graphene in the high-temperature plasma-spraying process is a critical issue, significantly limiting the remarkable performance improvement in graphene reinforced ceramic coatings. Here, we reported an effective approach to enhance the graphene retention, and thus improve the performance of plasma-sprayed alumina/graphene nanoplatelets (Al2O3/GNPs) coatings by heat treatment of agglomerated Al2O3/GNPs powders. The effect of powder heat treatment on the microstructure, GNPs retention, and electrical conductivity of Al2O3/GNPs coatings were systematically investigated. The results indicated that, with the increase in the powder heat treatment temperature, the plasma-sprayed Al2O3/GNPs coatings exhibited decreased porosity and improved adhesive strength. Thermogravimetric analysis and Raman spectra results indicated that increased GNPs retention from 12.9% to 28.4%, and further to 37.4%, as well as decreased structural defects, were obtained for the AG, AG850, and AG1280 coatings, respectively, which were fabricated by using AG powders without heat treatment, powders heat-treated at 850 °C, and powders heat-treated at 1280 °C. Moreover, the electrical conductivities of AG, AG850, and AG1280 coatings exhibited 3 orders, 4 orders, and 7 orders of magnitude higher than that of Al2O3 coating, respectively. Powder heat treatment is considered to increase the melting degree of agglomerated alumina particles, eventually leaving less thermal energy for GNPs to burn; thus, a high retention amount and structural integrity of GNPs and significantly enhanced electrical conductivity were achieved for the plasma-sprayed Al2O3/GNPs coatings.


Coatings ◽  
2017 ◽  
Vol 7 (11) ◽  
pp. 198 ◽  
Author(s):  
Ningning Hu ◽  
Matiullah Khan ◽  
Yongzhe Wang ◽  
Xuemei Song ◽  
Chucheng Lin ◽  
...  

2005 ◽  
Vol 502 ◽  
pp. 517-0
Author(s):  
Kenji Murakami

Pure nickel powder was low pressure plasma sprayed onto a steel substrate held at different temperatures during spraying. The as-sprayed coatings consist of columnar grains whose axes are nearly perpendicular to the lamellae composing the coatings. As the coating temperature becomes higher, the length of the columnar grains increases and is longer than the thickness of the lamellae, indicating the growth of the grains across the lamellar interfaces during spraying. On the other hand, the coatings that were heat treated after spraying consist of coarse equiaxed grains. The coatings that experienced high temperatures during spraying or the heat treated coatings have large porosity and contain large globular pores. The hardness, apparent density and the tensile strength of the coating itself were the highest for the coating prepared at a low temperature and became low on heat treatment. The thermal conductivity in the direction perpendicular to the coating was the largest for the coating that consisted of long columnar grains.


1985 ◽  
Vol 38 (4) ◽  
pp. 617 ◽  
Author(s):  
JG Collins ◽  
SJ Collocott ◽  
GK White

The linear thermal expansion coefficient a from 2 to 100 K and heat capacity per gram cp from 0�3 to 30 K are reported for fully-stabilized zirconia containing a nominal 16 wt.% (9 mol.%) of yttria. The heat capacity below 7 K has been analysed into a linear (tunnelling?) term, a Schottky term centred at 1�2 K, a Debye term (e~ = 540 K), and a small T5 contribution. The expansion coefficient is roughly proportional to T from 5 to 20 K and gives a limiting lattice Griineisen parameter 'Yo ::::: 5, which agrees with that calculated from elastic data.


Sign in / Sign up

Export Citation Format

Share Document