scholarly journals Enhancing Graphene Retention and Electrical Conductivity of Plasma-Sprayed Alumina/Graphene Nanoplatelets Coating by Powder Heat Treatment

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 643
Author(s):  
Xiaoyu Wu ◽  
Shufeng Xie ◽  
Kangwei Xu ◽  
Lei Huang ◽  
Daling Wei ◽  
...  

Burning loss of graphene in the high-temperature plasma-spraying process is a critical issue, significantly limiting the remarkable performance improvement in graphene reinforced ceramic coatings. Here, we reported an effective approach to enhance the graphene retention, and thus improve the performance of plasma-sprayed alumina/graphene nanoplatelets (Al2O3/GNPs) coatings by heat treatment of agglomerated Al2O3/GNPs powders. The effect of powder heat treatment on the microstructure, GNPs retention, and electrical conductivity of Al2O3/GNPs coatings were systematically investigated. The results indicated that, with the increase in the powder heat treatment temperature, the plasma-sprayed Al2O3/GNPs coatings exhibited decreased porosity and improved adhesive strength. Thermogravimetric analysis and Raman spectra results indicated that increased GNPs retention from 12.9% to 28.4%, and further to 37.4%, as well as decreased structural defects, were obtained for the AG, AG850, and AG1280 coatings, respectively, which were fabricated by using AG powders without heat treatment, powders heat-treated at 850 °C, and powders heat-treated at 1280 °C. Moreover, the electrical conductivities of AG, AG850, and AG1280 coatings exhibited 3 orders, 4 orders, and 7 orders of magnitude higher than that of Al2O3 coating, respectively. Powder heat treatment is considered to increase the melting degree of agglomerated alumina particles, eventually leaving less thermal energy for GNPs to burn; thus, a high retention amount and structural integrity of GNPs and significantly enhanced electrical conductivity were achieved for the plasma-sprayed Al2O3/GNPs coatings.

2014 ◽  
Vol 782 ◽  
pp. 563-566
Author(s):  
Yasuhiro Hoshiyama ◽  
Toshiaki Otani ◽  
Hidekazu Miyake

Fe-C-Ta-Cr-Ni alloy powder in diameter of 32-53 μm made by argon atomization was low-pressure plasma sprayed to produce high Cr-Ni cast iron base deposits with finely dispersed tantalum carbide particles. The as-sprayed deposit formed on a water-cooled substrate consisted of γFe, αFe and carbide. The fine precipitates of approximately 0.1 μm in the as-sprayed deposit formed on a water-cooled substrate were carbide. With increasing heat treatment temperature up to 1273 K, the carbide particles coarsened. The hardness of deposit decreases with increasing heat treatment temperature. The wear resistance of as-sprayed deposit formed on a non-cooled substrate was higher than that of the deposit heat-treated at 1273 K. The as-sprayed deposit and deposit heat-treated at 1273 K hade higher wear resistance than a commercial stainless steel.


2010 ◽  
Vol 654-656 ◽  
pp. 1888-1891 ◽  
Author(s):  
Yasuhiro Hoshiyama ◽  
Tsutomu Miyazaki ◽  
Hidekazu Miyake

Fe-C-Ti-Cr-Ni alloy powder in diameter of 32-53 μm made by argon atomization is low-pressure plasma sprayed to produce stainless cast iron base deposits with finely dispersed titanium carbide particles. The as-sprayed deposit formed on a water-cooled substrate consists of γFe, αFe, TiC and Cr3C2. Heat treatment of the as-sprayed deposit above 873 K results in the formation of Cr7C3. The fine precipitates of approximately 0.2 μm in the as-sprayed deposit formed on a water-cooled substrate are carbide. The as-sprayed deposit produced on a non-cooled substrate and deposits which are obtained by heat treatment of the as-sprayed deposit are composed of γFe, αFe, TiC, Cr3C2 and Cr7C3. As heat treatment temperature increases, carbide precipitates coarsen. The hardness of deposit decreases with increasing heat treatment temperature. The wear resistance of as-sprayed deposit formed on a non-cooled substrate was higher than that of the deposit heat-treated at 1273 K. The as-sprayed deposit and deposit heat-treated at 1273 K have higher wear resistance than a commercial stainless steel.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1264
Author(s):  
Teng-Chun Yang ◽  
Tung-Lin Wu ◽  
Chin-Hao Yeh

The influence of heat treatment on the physico-mechanical properties, water resistance, and creep behavior of moso bamboo (Phyllostachys pubescens) was determined in this study. The results revealed that the density, moisture content, and flexural properties showed negative relationships with the heat treatment temperature, while an improvement in the dimensional stability (anti-swelling efficiency and anti-water absorption efficiency) of heat-treated samples was observed during water absorption tests. Additionally, the creep master curves of the untreated and heat-treated samples were successfully constructed using the stepped isostress method (SSM) at a series of elevated stresses. Furthermore, the SSM-predicted creep compliance curves fit well with the 90-day full-scale experimental data. When the heat treatment temperature increased to 180 °C, the degradation ratio of the creep resistance (rd) significantly increased over all periods. However, the rd of the tested bamboo decreased as the heat treatment temperature increased up to 220 °C.


2013 ◽  
Vol 747-748 ◽  
pp. 497-501
Author(s):  
Na Liu ◽  
Zhou Li ◽  
Guo Qing Zhang ◽  
Hua Yuan ◽  
Wen Yong Xu ◽  
...  

Powder metallurgical TiAl alloy was fabricated by gas atomization powders, and the effect of heat treatment temperature on the microstructure evolution and room tensile properties of PM TiAl alloy was investigated. The uniform fine duplex microstructure was formed in PM TiAl based alloy after being heat treated at 1250/2h followed by furnace cooling (FC)+ 900/6h (FC). When the first step heat treatment temperature was improved to 1360/1h, the near lamellar microstructure was achieved. The ductility of the alloy after heat treatment improved markedly to 1.2% and 0.6%, but the tensile strength decreased to 570MPa and 600MPa compared to 655MPa of as-HIP TiAl alloy. Post heat treatment at the higher temperature in the alpha plus gamma field would regenerate thermally induced porosity (TIP).


2007 ◽  
Vol 26-28 ◽  
pp. 687-690 ◽  
Author(s):  
J.P. Wang ◽  
Wei Sun ◽  
Z. Zhang

Crystalline approximants structurally related to decagonal quasicrystal in the as-cast and heat-treated Al75Pd15Fe10 alloys and defect structures in them have been studied by means of high-resolution electron microscopy (HREM). Structural defects of linear and planar types were found to exist extensively in the orthorhombic ε16-phase formed in the as-cast Al75Pd15Fe10 alloy. In contrast with the distribution and configuration of the defects in the as-cast ε16-phase, we found that high-temperature heat treatment promotes the formation of a kind of regular network of structural defects in the ε16-phase. This suggests that rearrangements of atom clusters and as well as defects occurred due to the heat treatment. The relationship between the distribution of atom clusters and the configuration of defects will be discussed.


2016 ◽  
Vol 97 ◽  
pp. 141-146 ◽  
Author(s):  
Taywin Buasri ◽  
Hyunbo Shim ◽  
Masaki Tahara ◽  
Tomonari Inamura ◽  
Kenji Goto ◽  
...  

The effect of heat treatment temperature from 1173 K to 1373 K for 3.6 ks on mechanical and superelastic properties of an Ni-free Au-51Ti-18Co alloy (mol%) was investigated. The stress for inducing martensitic transformation (SIMT) and the critical stress for slip deformation (CSS) slightly decrease with increasing the heat–treatment temperature. Regardless of heat–treatment temperature, good superelasticity was definitely recognized with the maximum shape recovery ratio up to 95 % and 4 % superelastic shape recovery strain. As the mentioned reasons, the Au-51Ti-18Co alloy is promising for practical biomedical applications.


2015 ◽  
Vol 1113 ◽  
pp. 56-61
Author(s):  
Nor Azrina Resali ◽  
Koay Mei Hyie ◽  
M.N. Berhan ◽  
C.M. Mardziah

In this research, heat treatment is the final finishing process applied on nanocrystalline CoNiFe to improve microstructure for good hardness property. Nanocrystalline CoNiFe has been synthesized using the electrodeposition method. This study investigated the effect of heat treatment at 500°C, 600°C, 700°C and 800°C on electrodeposited nanocrystalline CoNiFe. The heat treatment process was performed in the tube furnace with flowing Argon gas. By changing the heat treatment temperature, physical properties such as phase and crystallographic structure, surface morphology, grain size and hardness of nanocrystalline CoNiFe was studied. The nanocrystalline CoNiFe phase revealed the Face Centered Cubic (FCC) and Body Centered Cubic (BCC) crystal structure. FESEM micrographs showed that the grain sizes of the coatings were in the range of 78.76 nm to 132 nm. Dendrite shape was found in the microstructure of nanocrystalline CoNiFe. The nanocrystalline CoNiFe prepared in heat treatment temperature of 700°C, achieved the highest hardness of 449 HVN. The surface roughness of nanocrystalline CoNiFe heated at 700°C was found to be smaller than other temperatures.


2017 ◽  
Vol 891 ◽  
pp. 565-568
Author(s):  
Yasuhiro Hoshiyama ◽  
Kyouhei Yamaguchi ◽  
Hidekazu Miyake

Fe-C-W-Cr-Ni alloy powder in diameter of 32-53 μm made by argon atomization was low-pressure plasma sprayed to produce high Cr-Ni cast iron base deposits with finely dispersed tungsten carbide particles. The as-sprayed deposit produced on a non-cooled substrate was composed of γFe, αFe and carbide. The fine precipitates in the as-sprayed deposit were carbide. With increasing heat treatment temperature up to 1273 K, the carbide particles coarsened. The as-sprayed deposit produced on a non-cooled substrate had higher hardness than the heat-treated deposits. The wear resistance of the as-sprayed deposit produced on a non-cooled substrate was lower than that of heat-treated deposits. The as-sprayed deposit produced on a non-cooled substrate and heat-treated deposits had higher wear resistance than commercial stainless steel.


2010 ◽  
Vol 105-106 ◽  
pp. 123-125 ◽  
Author(s):  
Yong Li ◽  
Qi Hong Wei ◽  
Ling Li ◽  
Chong Hai Wang ◽  
Xiao Li Zhang ◽  
...  

In this paper, negative thermal expansion coefficient eucryptite powders were prepared by sol-gel method using silica-sol as starting material. The raw blocks were obtained by dry pressing process after the powder was synthesized, and then the raw blocks were heat-treated at 600º, 1150º, 1280º, 1380º, 1420º and 1450°C, respectively. Variations of density, porosity and thermal expansion coefficient at different heat treatment temperatures were investigated. Phase transformation and fracture surface morphology of eucryptite heat-treated at different temperatures, respectively, were observed by XRD and SEM. The results indicate that, with the increasing heat- treatment temperature, the grain size and the bending strength increased, porosity decreased, thermal expansion coefficient decreased continuously. Negative thermal expansion coefficient of -5.3162×10-6~-7.4413×10-6 (0~800°C) was obtained. But when the heat-treatment temperature was more than 1420°C, porosity began to increase, bending strength began to decrease, which were the symbols of over-burning, while the main crystal phase didn’t change.


Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2539 ◽  
Author(s):  
Peiyou Li ◽  
Yongshan Wang ◽  
Fanying Meng ◽  
Le Cao ◽  
Zhirong He

The martensitic transformation and superelasticity of Ti49Ni51 shape memory alloy heat-treatment at different temperatures were investigated. The experimental results show that the microstructures of as-cast and heat-treated (723 K) Ni-rich Ti49Ni51 samples prepared by rapidly-solidified technology are composed of B2 TiNi phase, and Ti3Ni4 and Ti2Ni phases; the microstructures of heat-treated Ti49Ni51 samples at 773 and 823 K are composed of B2 TiNi phase, and of B2 TiNi and Ti2Ni phases, respectively. The martensitic transformation of as-cast Ti49Ni51 alloy is three-stage, A→R→M1 and R→M2 transformation during cooling, and two-stage, M→R→A transformation during heating. The transformations of the heat-treated Ti49Ni51 samples at 723 and 823 K are the A↔R↔M/A↔M transformation during cooling/heating, respectively. For the heat-treated alloy at 773 K, the transformations are the A→R/M→R→A during cooling/heating, respectively. For the heat-treated alloy at 773 K, only a small thermal hysteresis is suitable for sensor devices. The stable σmax values of 723 and 773 K heat-treated samples with a large Wd value exhibit high safety in application. The 773 and 823 K heat-treated samples have large stable strain–energy densities, and are a good superelastic alloy. The experimental data obtained provide a valuable reference for the industrial application of rapidly-solidified casting and heat-treated Ti49Ni51 alloy.


Sign in / Sign up

Export Citation Format

Share Document