Infra-red emission properties of ZnO:Er thin films prepared on the sapphire substrates

2012 ◽  
Vol 38 ◽  
pp. S585-S588 ◽  
Author(s):  
Jun Seong Lee ◽  
Young Jin Kim
2014 ◽  
Vol 1658 ◽  
Author(s):  
G. Amato ◽  
L. Croin ◽  
G. Milano ◽  
E. Vittone

ABSTRACTIn this paper we report on a systematic study of Cu thin film dewetting by the monitoring of the intensity of the infra-red emission from the film surface during Rapid Thermal Chemical Vapor Deposition of graphene. The time evolution of Cu coverage highlights three typical stages of dewetting which strongly depend not only on the temperature and film thickness, but also on the pressure and composition of the gas in chamber. Consequently, we demonstrate that the Cu surface can be effectively activated in films at temperatures lower than in foils and the process can be fully controlled by adjusting those parameters, in order to reach the optimal conditions for graphene growth.


1982 ◽  
Vol 21 (Part 1, No. 10) ◽  
pp. 1427-1430 ◽  
Author(s):  
Keiichi Tanabe ◽  
Osamu Michikami

1993 ◽  
Vol 74 (7) ◽  
pp. 4430-4437 ◽  
Author(s):  
T. Lei ◽  
K. F. Ludwig ◽  
T. D. Moustakas

2013 ◽  
Vol 364 ◽  
pp. 30-33 ◽  
Author(s):  
Norihiro Suzuki ◽  
Kentaro Kaneko ◽  
Shizuo Fujita

1998 ◽  
Vol 536 ◽  
Author(s):  
S. B. Aldabergenova ◽  
M. Albrecht ◽  
A. A. Andreev ◽  
C. Inglefield ◽  
J. Viner ◽  
...  

AbstractWe report on strong Er3+ luminescence in the visible and infra-red regions at room temperature in amorphous GaN:Er thin films prepared by DC magnetron co-sputtering. The intensity of the Er3+ luminescence at 1.535 μm corresponding to 4I13/2 → 4I15/2 transitions is greatly enhanced after annealing at 750°C. In this material GaN crystallites have formed and embedded in the continuous amorphous matrix. The crystallites are 4 to 7 nm in diameter as analyzed by high resolution transmission electron microscopy. The absorption edge, extending three orders of magnitude in absorption coefficient in the spectral range from 0.5 to 3.5 eV, is superimposed on resonant absorption bands of Er3+ ions.The total photoluminescence spectrum consists of welldefined Er3+ luminescence peaks imposed on a broad band edge luminescence from the amorphous GaN host matrix.


2011 ◽  
Vol 326 (1) ◽  
pp. 9-13 ◽  
Author(s):  
Se-Yun Kim ◽  
Sang-Yun Sung ◽  
Kwang-Min Jo ◽  
Joon-Hyung Lee ◽  
Jeong-Joo Kim ◽  
...  

2010 ◽  
Vol 18 (3) ◽  
Author(s):  
S.G. Gasan-Zade ◽  
M.V. Strikha ◽  
G.A. Shepelskii

AbstractThe intensive far infra-red irradiation in the range of 80–100 μm was observed in uniaxially strained gapless p-Hg1−xCdxTe (MCT) with x = 0.14 in the strong electric field. The inverse occupation in strained MCT is created because the hot electrons distribution occurs in the c-band under impact ionization, while the holes are localized near the v-band top. The probability of band-to-band radiative transition increases dramatically when the acceptor level becomes resonance in the v-band. At threshold values of strain and electric field (P = 2.5–2.7 kbar, E = 50–55 V/cm), increase in irradiation (by 3 orders of magnitude) and increase in current (by 4–6 times) occur.


Sign in / Sign up

Export Citation Format

Share Document