Properties of Nb3Al Thin Films Sputter-Deposited on Sapphire Substrates

1982 ◽  
Vol 21 (Part 1, No. 10) ◽  
pp. 1427-1430 ◽  
Author(s):  
Keiichi Tanabe ◽  
Osamu Michikami
1994 ◽  
Vol 343 ◽  
Author(s):  
Shankar K. Venkataraman ◽  
John C. Nelson ◽  
Neville R. Moody ◽  
David L. Kohlstedt ◽  
William W. Gerberich

ABSTRACTThe adhesion of Ta2N thin films – often used as thin film resistors – to sapphire substrates has been studied by continuous microindentation and microscratch techniques. Ta2N films, 0.1-0.63μm in thickness, were sputter deposited onto single crystal substrates. Continuous microscratch experiments were performed by driving a conical diamond indenter simultaneously into and across the film surface until stresses high enough to delaminate the film were developed. Continuous microindentation experiments were performed to induce film spallation by normal indentation. From both of these experiments, interfacial fracture toughness was determined as a function of film thickness. The interfacial fracture toughness obtained from continuous microscratch experiments is 0.53±0.17 MPa√m, independent of film thickness. This observation indicates that there is almost no plastic deformation in the film prior to fracture so that a ‘true’ interfacial fracture toughness is measured. For the 0.63 µm thick film, continuous microindentation data yielded a fracture toughness of 0.61 ±0.08 MPa√m, which matches closely the value obtained from the microscratch test. Hence, the continuous microscratch and microindentation techniques are viable methods for determining the interfacial fracture toughness in such bi-material systems.


1999 ◽  
Vol 594 ◽  
Author(s):  
J. B. Vella ◽  
R. C. Cammarata ◽  
T. P. Weihs ◽  
C. L. Chien ◽  
A. B. Mann ◽  
...  

AbstractNanoindentation studies were preformed on amorphous metal, multilayered thin films containing alternating layers of Fe50Ti50 and Cu35Nb65 in order to investigate the mechanism for plastic deformation in metallic glass. Films with a total thickness of 1μm and bilayer repeat lengths ranging from 2 to 50 nm were magnetron sputter-deposited onto sapphire substrates. In contrast to many crystalline multilayered systems, where large hardness enhancements have been observed when the bilayer repeat length is reduced below about 10 nm, no significant hardness enhancement as a function of bilayer repeat length was observed in the Fe50Ti50/ Cu35Nb65 amorphous metal system. This result suggests that a dislocation–like mechanism for plastic deformation may not be appropriate for these amorphous metals.


2005 ◽  
Vol 475-479 ◽  
pp. 1825-1828
Author(s):  
Ju Hyun Myung ◽  
Nam Ho Kim ◽  
Hyoun Woo Kim

We have demonstrated the growth of ZnO thin films with c-axis orientation at room temperature on various substrates such as Si(100), SiO2, and sapphire by the r.f. magnetron sputtering method. X-ray diffraction (XRD) and scanning electron microscopy altogether indicated that the larger grain size and the higher crystallinity were attained when the ZnO films were deposited on sapphire substrates, compared to the films on Si or SiO2 substrates. The c-axis lattice constant decreased by thermal annealing for the ZnO films deposited on Si or SiO2 substrates, while increased by the thermal annealing for the ZnO films grown on sapphire substrates.


Author(s):  
G. Lucadamo ◽  
K. Barmak ◽  
C. Michaelsen

The subject of reactive phase formation in multilayer thin films of varying periodicity has stimulated much research over the past few years. Recent studies have sought to understand the reactions that occur during the annealing of Ni/Al multilayers. Dark field imaging from transmission electron microscopy (TEM) studies in conjunction with in situ x-ray diffraction measurements, and calorimetry experiments (isothermal and constant heating rate), have yielded new insights into the sequence of phases that occur during annealing and the evolution of their microstructure.In this paper we report on reactive phase formation in sputter-deposited lNi:3Al multilayer thin films with a periodicity A (the combined thickness of an aluminum and nickel layer) from 2.5 to 320 nm. A cross-sectional TEM micrograph of an as-deposited film with a periodicity of 10 nm is shown in figure 1. This image shows diffraction contrast from the Ni grains and occasionally from the Al grains in their respective layers.


Author(s):  
F. Ma ◽  
S. Vivekanand ◽  
K. Barmak ◽  
C. Michaelsen

Solid state reactions in sputter-deposited Nb/Al multilayer thin films have been studied by transmission and analytical electron microscopy (TEM/AEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The Nb/Al multilayer thin films for TEM studies were sputter-deposited on (1102)sapphire substrates. The periodicity of the films is in the range 10-500 nm. The overall composition of the films are 1/3, 2/1, and 3/1 Nb/Al, corresponding to the stoichiometric composition of the three intermetallic phases in this system.Figure 1 is a TEM micrograph of an as-deposited film with periodicity A = dA1 + dNb = 72 nm, where d's are layer thicknesses. The polycrystalline nature of the Al and Nb layers with their columnar grain structure is evident in the figure. Both Nb and Al layers exhibit crystallographic texture, with the electron diffraction pattern for this film showing stronger diffraction spots in the direction normal to the multilayer. The X-ray diffraction patterns of all films are dominated by the Al(l 11) and Nb(l 10) peaks and show a merging of these two peaks with decreasing periodicity.


1995 ◽  
Vol 05 (C8) ◽  
pp. C8-689-C8-694 ◽  
Author(s):  
T. Hashinaga ◽  
S. Miyazaki ◽  
T. Ueki ◽  
H. Horikawa

2003 ◽  
Vol 766 ◽  
Author(s):  
A. Sekiguchi ◽  
J. Koike ◽  
K. Ueoka ◽  
J. Ye ◽  
H. Okamura ◽  
...  

AbstractAdhesion strength in sputter-deposited Cu thin films on various types of barrier layers was investigated by scratch test. The barrier layers were Ta1-xNx with varied nitrogen concentration of 0, 0.2, 0.3, and 0.5. Microstructure observation by TEM indicated that each layer consists of mixed phases of β;-Ta, bcc-TaN0.1, hexagonal-TaN, and fcc-TaN, depending on the nitrogen concentration. A sulfur- containing amorphous phase was also present discontinuously at the Cu/barrier interfaces in all samples. Scratch test showed that delamination occurred at the Cu/barrier interface and that the overall adhesion strength increased with increasing the nitrogen concentration. A good correlation was found between the measured adhesion strength and the composing phases in the barrier layer.


Sign in / Sign up

Export Citation Format

Share Document