Synthesis of ZnO microstructures in glycerol/water solution

2014 ◽  
Vol 40 (1) ◽  
pp. 141-148 ◽  
Author(s):  
Xiaobin Dong ◽  
Aiyu Zhang ◽  
Ping Yang
2014 ◽  
Vol 747 ◽  
pp. 119-140 ◽  
Author(s):  
E. Vandre ◽  
M. S. Carvalho ◽  
S. Kumar

AbstractCharacteristic substrate speeds and meniscus shapes associated with the onset of air entrainment are studied during dynamic wetting failure along a planar substrate. Using high-speed video, the behaviour of the dynamic contact line (DCL) is recorded as a tape substrate is drawn through a bath of a glycerol/water solution. Air entrainment is identified by triangular air films that elongate from the DCL above some critical substrate speed. Meniscus confinement within a narrow gap between the substrate and a stationary plate is shown to delay air entrainment to higher speeds for a wide range of liquid viscosities, expanding upon the findings of Vandre, Carvalho & Kumar (J. Fluid Mech., vol. 707, 2012, pp. 496–520). A pressurized liquid reservoir controls the meniscus position within the confinement gap. It is found that liquid pressurization further postpones air entrainment when the meniscus is located near a sharp corner along the stationary plate. Meniscus shapes recorded near the DCL demonstrate that operating conditions influence the size of entrained air films, with smaller films appearing in the more viscous solutions. Regardless of size, air films become unstable to thickness perturbations and ultimately rupture, leading to the entrainment of air bubbles. Recorded critical speeds and air-film sizes compare well to predictions from a hydrodynamic model for dynamic wetting failure, suggesting that strong air stresses near the DCL trigger the onset of air entrainment.


RSC Advances ◽  
2017 ◽  
Vol 7 (44) ◽  
pp. 27807-27815 ◽  
Author(s):  
Qing-Jun Guan ◽  
Wei Sun ◽  
Yue-Hua Hu ◽  
Zhi-Gang Yin ◽  
Chang-Ping Guan

A brand new method to prepare α-CaSO4·0.5H2O with low aspect ratios from flue gas desulfurization gypsum in glycerol-water solution was presented, in which NaCl was used as the phase transition accelerator and C4H4O4Na2·6H2O as the crystal modifier.


Author(s):  
Hiroki Kurahara ◽  
Keita Ando

Abstract We experimentally study the effects of viscosity on laser-induced shockwave in glycerol-water solution. A shockwave is generated through rapid expansion of plasma, which is induced by focusing a 6 ns pulse laser (532 nm) of energy fixed at 1.66 ± 0.22 mJ into 80, 90, 100 wt% glycerol-water solution. The shockwave propagation is recorded by an ultra-high-speed camera taken at 100 Mfps together with a pulse laser stroboscope. The photographs are used to determine the shock front position as a function of time, which allows for calculating the shock pressure according to the stiffened-gas type Rankine-Hugoniot relation. It turns out that the initial plasma pressure is reduced by having higher glycerol concentration (i.e., higher viscosity); therefore, wave steepening effect is deemphasized, resulting in a smaller decay rate.


Author(s):  
Isaias Cueva-Perez ◽  
Roque Alfredo Osornio-Rios ◽  
Aurelio Dominguez-Gonzalez ◽  
Ion Stiharu ◽  
Angel Perez-Cruz

In recent years, the need for portable, low-cost, and eco-friendly devices for testing and monitoring has arisen. Paper-based devices have emerged as a response to these needs due to the properties induced by capillarity, flexibility, disposability, and biodegradability. In this work, the authors explored the possibility of tuning the hygro-mechanical response of paper-based cantilever beams using glycerol. A lumped-parameter model with non-linear stiffness is used to describe the dynamic response of the beams using three parameters. An experimental method based on resonance frequency tests is used to study the influence of glycerol on the dynamic response of four different beam configurations. The obtained results demonstrate that the resonance frequency of paper-based mechanical systems can be easily tuned by the imbibition of a glycerol–water solution. This study could lead to the development of tunable paper-based mechanical systems for specific applications such as energy harvesters and hygro-mechanical-based sensors.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 88
Author(s):  
Cheng-Chuan Chen ◽  
Shu-Cheng Lo ◽  
Pei-Kuen Wei

Label-free surface plasmon resonance (SPR) detection of mercuric ions in various aqueous solutions, using capped gold nanoslit arrays combined with electrochemical (EC) sensing technique, is demonstrated. The nanoslit arrays are fabricated on flexible cyclo-olefin polymer substrates by a nanoimprinting lithography method. The EC and SPR signals for the investigation of current responses and transmission SPR spectra are simultaneously measured during metal ions electrodeposition. Glycerol–water solution is studied to evaluate the resonant peak wavelength sensitivity (480.3 nm RIU−1) with a FOM of 40.0 RIU−1 and the obtained intensity sensitivity is 1819.9%. The ferrocyanide/ferricyanide redox couple performs the diffusion controlled electrochemical processes (R2 = 0.99). By investigating the SPR intensity changes and wavelength shifts of various mercuric ion concentrations, the optical properties are evaluated under chronoamperometric conditions. The sensors are evaluated in the detection range between 100 μM and 10 nM with a detection limit of 1 μM. The time dependence of SPR signals and the selectivity of 10 μM Hg2+ in the presence of 10 μM interfering metal ion species from Ca2+, Co2+, Ni2+, Na+, Cu2+, Pb2 + and Mn2+ are determined. The capped gold nanoslit arrays show the selectivity of Hg2+ and the EC sensing method is effectively utilized to aqueous Hg2+ detection. This study provides a label-free detection technique of mercuric ions and this developed system is potentially applicable to detecting chemicals and biomolecules.


Author(s):  
Inga Dušenkova ◽  
Iveta Kusiņa ◽  
Juris Mālers ◽  
Līga Bērziņa-Cimdiņa

<p class="R-AbstractKeywords"><span lang="EN-US">Recent research shows that clay minerals can be used in sunscreens as UV filters instead of inorganic and organic compounds, which can cause unexpected photo-catalytic effect and damage the skin surface and can be absorbed into the skin and cause allergic reactions. In this study UV transmittance of suspensions containing clay fraction (mostly illite) and 50% glycerol/water solution was measured. Samples without chemical treatment, with removed carbonates and iron containing minerals (oxides and hydroxides) were analyzed. </span></p><p class="R-AbstractKeywords"><span lang="EN-US">Results showed that the chemical treatment decreased UV protection ability. The highest increase of UV transmittance was observed for samples after removal of iron </span><span lang="EN-US">containing minerals</span><span lang="EN-US">. UV transmittance decreased by 10-14% when the concentration of clay fraction in the suspension was increased from 20 to 30 mass%.<span>  </span>Samples with the highest concentration of iron oxide showed also the highest UV protection ability.</span></p>


Sign in / Sign up

Export Citation Format

Share Document