Co-precipitation of low-agglomerated Y2W3O12 nanoparticles: The effects of aging time, calcination temperature and surfactant addition

2019 ◽  
Vol 45 (16) ◽  
pp. 20189-20196 ◽  
Author(s):  
Mayara Marzano ◽  
Patricia I. Pontón ◽  
Bojan A. Marinkovic
Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 354
Author(s):  
Khadijah H. Alharbi ◽  
Ali Alsalme ◽  
Ahmed Bader A. Aloumi ◽  
Mohammed Rafiq H. Siddiqui

Oxidation is an important organic transformation, and several catalysts have been reported for this conversion. In this study, we report the synthesis of mixed metal oxide CuxZnyO, which is prepared by a coprecipitation method by varying the molar ratio of Cu and Zn in the catalytic system. The prepared mixed metal oxide CuxZnyO was evaluated for catalytic performance for toluene oxidation. Various parameters of the catalytic evaluation were studied in order to ascertain the optimum condition for the best catalytic performance. The results indicate that aging time, calcination temperature, reaction temperature, and feed rate influence catalytic performance. It was found that the catalyst interfaces apparently enhanced catalytic activity for toluene oxidation. The XRD diffractograms reveal the crystalline nature of the mixed metal oxide formed and also confirm the coexistence of hexagonal and monoclinic crystalline phases. The catalyst prepared by aging for 4 h and calcined at 450 °C was found to be the best for the conversion of toluene to benzaldehyde while the reactor temperature was maintained at 250 °C with toluene fed into the reactor at 0.01 mL/min. The catalyst was active for about 13 h.


1995 ◽  
Vol 412 ◽  
Author(s):  
C. Oda ◽  
H. Yoshikawa ◽  
M. Yui

AbstractPalladium solubility was measured in a dilute aqueous solution at room temperature in the pH range from 3 to 13 under anaerobic conditions. Crystalline Pd metal was clearly visible and the concentration of palladium in solution decreased gradually with aging time. The palladium concentrations in solution were less than 9.4×10-10M in the pH range from 4 to 10 and increased to 10-7M in the pH range greater than 10. This study suggests that palladium concentrations in certain high-level waste repository environments may be limited by Pd metal and may be less than 10-9M.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1666
Author(s):  
Tsegaye Sh. Lemmi ◽  
Marcin Barburski ◽  
Adam Kabziński ◽  
Krzysztof Frukacz

Textile materials produced from a high tenacity industrial polyester fiber are most widely used in the mechanical rubber goods industry to reinforce conveyor belts, tire cords, and hoses. Reinforcement of textile rubber undergoes a vulcanization process to adhere the textile materials with the rubber and to enhance the physio-mechanical properties of the product. The vulcanization process has an influence on the textile material being used as a reinforcement. In this work, the effects of aging temperature and time on the high tenacity polyester yarn’s mechanical and surface structural properties were investigated. An experiment was carried out on a pre-activated high tenacity polyester yarn of different linear densities, by aging the yarn specimens under various aging temperatures of 140, 160, 200, and 220 °C for six, twelve, and thirty-five minutes of aging time. The tensile properties and surface structural change in the yarns pre- and post-aging were studied. The investigation illustrates that aging time and temperature influence the surface structure of the fiber, tenacity, and elongation properties of the yarn. Compared to unaged yarn, an almost five times higher percentage of elongation was obtained for the samples aged at 220 °C for 6 min, while the lowest tenacity was obtained for the sample subjected to aging under 220 °C for 35 min.


2018 ◽  
Vol 281 ◽  
pp. 40-45
Author(s):  
Jie Guang Song ◽  
Lin Chen ◽  
Cai Liang Pang ◽  
Jia Zhang ◽  
Xian Zhong Wang ◽  
...  

YAG materials has a number of unique properties, the application is very extensive. In this paper, the superfine YAG powder materials were prepared by co-precipitation method and hydrothermal precipitation method. The influence of synthesis process on the morphology of the powder was investigated. The results showed that the precursor powder prepared via the co-precipitation method is mainly from amorphous to crystalline transition with the increasing calcination temperature, the precursor agglomeration is more serious, In the process of increasing the calcination temperature, the dispersibility of the roasted powder is greatly improved, which is favorable for the growth of the crystal grains, so that the particle size of the powder is gradually increased, the YAG precursor prepared by the co-precipitation method is transformed into YAG crystals, the phase transition occurs mainly between 900 and 1100°C. When the molar ratio of salt to alkali is Y3+: OH-=1: 8 via the hydrothermal reaction, the YAG particles with homogeneous morphology can be obtained. When the molar ratio of salt and alkali is increased continuously, the morphology of YAG particles is not obviously changed. The co-precipitation method is easy to control the particle size, the hydrothermal method is easy to control the particle morphology.


2017 ◽  
Vol 898 ◽  
pp. 1649-1654 ◽  
Author(s):  
Min Chen ◽  
Run Hua Fan ◽  
Zi Dong Zhang ◽  
Yan Sheng Yin ◽  
Li Hua Dong

The uniform hexagonal barium ferrite powders were synthesized by co-precipitation method using metal chloride. The effects of the amount of hexadecyltrimethyl ammonium bromide (CTAB), the water bath and calcination temperature on the phase formation, microstructure and density of barium ferrites were systematically investigated. The results showed that the formation of uniform hexagonal barium ferrite powders was significantly influenced by the amount of CTAB and the water bath could lead to the larger grain size and density. The SEM demonstrated that the BaFe12O19 powders had plate-like shape with crystallite sizes varing from 150 to 200 nm. When the amount of CTAB was 0.2g/100ml and the calcination temperature was 850 °C, the barium ferrite powders were uniform which indicated that the amount of surfactant and calcination temperature were very optimum.


2006 ◽  
Vol 301 (2) ◽  
pp. 287-291 ◽  
Author(s):  
Lijun Zhao ◽  
Hua Yang ◽  
Shuiming Li ◽  
Lianxiang Yu ◽  
Yuming Cui ◽  
...  

2015 ◽  
Vol 1112 ◽  
pp. 489-492
Author(s):  
Ali Mufid ◽  
M. Zainuri

This research aims to form particles of hematite (α-Fe2O3) with a basis of mineral iron ore Fe3O4 from Tanah Laut. Magnetite Fe3O4 was synthesized using co-precipitation method. Further characterization using X-ray fluorescence (XRF) to obtain the percentage of the elements, obtained an iron content of 98.51%. Then characterized using thermo-gravimetric analysis and differential scanning calorimetry (TGA-DSC) to determine the calcination temperature, that at a temperature of 445 °C mass decreased by 0.369% due to increase in temperature. Further Characterization of X-ray diffraction (XRD) to determine the phases formed at the calcination temperature variation of 400 °C, 445 °C, 500 °C and 600 °C with a holding time of 5 hours to form a single phase α-Fe2O3 hematite. Testing with a particle size analyzer (PSA) to determine the particle size distribution, where test results indicate that the α-Fe2O3 phase of each having a particle size of 269.7 nm, 332.2 nm, 357.9 nm, 412.2 nm. The best quantity is shown at a temperature of 500 °C to form the hematite phase. This result is used as the calcination procedure to obtain a source of Fe ions in the manufacture of Lithium Ferro Phosphate.


Sign in / Sign up

Export Citation Format

Share Document