Effect of the Calcination Temperature on the Properties of Y-TZP Powders Prepared by Co-Precipitation

2017 ◽  
Vol 17 (6) ◽  
pp. 4368-4371 ◽  
Author(s):  
Jae Hong Kim ◽  
Kyu Hong Hwang ◽  
Jong Kook Lee
2018 ◽  
Vol 281 ◽  
pp. 40-45
Author(s):  
Jie Guang Song ◽  
Lin Chen ◽  
Cai Liang Pang ◽  
Jia Zhang ◽  
Xian Zhong Wang ◽  
...  

YAG materials has a number of unique properties, the application is very extensive. In this paper, the superfine YAG powder materials were prepared by co-precipitation method and hydrothermal precipitation method. The influence of synthesis process on the morphology of the powder was investigated. The results showed that the precursor powder prepared via the co-precipitation method is mainly from amorphous to crystalline transition with the increasing calcination temperature, the precursor agglomeration is more serious, In the process of increasing the calcination temperature, the dispersibility of the roasted powder is greatly improved, which is favorable for the growth of the crystal grains, so that the particle size of the powder is gradually increased, the YAG precursor prepared by the co-precipitation method is transformed into YAG crystals, the phase transition occurs mainly between 900 and 1100°C. When the molar ratio of salt to alkali is Y3+: OH-=1: 8 via the hydrothermal reaction, the YAG particles with homogeneous morphology can be obtained. When the molar ratio of salt and alkali is increased continuously, the morphology of YAG particles is not obviously changed. The co-precipitation method is easy to control the particle size, the hydrothermal method is easy to control the particle morphology.


2017 ◽  
Vol 898 ◽  
pp. 1649-1654 ◽  
Author(s):  
Min Chen ◽  
Run Hua Fan ◽  
Zi Dong Zhang ◽  
Yan Sheng Yin ◽  
Li Hua Dong

The uniform hexagonal barium ferrite powders were synthesized by co-precipitation method using metal chloride. The effects of the amount of hexadecyltrimethyl ammonium bromide (CTAB), the water bath and calcination temperature on the phase formation, microstructure and density of barium ferrites were systematically investigated. The results showed that the formation of uniform hexagonal barium ferrite powders was significantly influenced by the amount of CTAB and the water bath could lead to the larger grain size and density. The SEM demonstrated that the BaFe12O19 powders had plate-like shape with crystallite sizes varing from 150 to 200 nm. When the amount of CTAB was 0.2g/100ml and the calcination temperature was 850 °C, the barium ferrite powders were uniform which indicated that the amount of surfactant and calcination temperature were very optimum.


2015 ◽  
Vol 1112 ◽  
pp. 489-492
Author(s):  
Ali Mufid ◽  
M. Zainuri

This research aims to form particles of hematite (α-Fe2O3) with a basis of mineral iron ore Fe3O4 from Tanah Laut. Magnetite Fe3O4 was synthesized using co-precipitation method. Further characterization using X-ray fluorescence (XRF) to obtain the percentage of the elements, obtained an iron content of 98.51%. Then characterized using thermo-gravimetric analysis and differential scanning calorimetry (TGA-DSC) to determine the calcination temperature, that at a temperature of 445 °C mass decreased by 0.369% due to increase in temperature. Further Characterization of X-ray diffraction (XRD) to determine the phases formed at the calcination temperature variation of 400 °C, 445 °C, 500 °C and 600 °C with a holding time of 5 hours to form a single phase α-Fe2O3 hematite. Testing with a particle size analyzer (PSA) to determine the particle size distribution, where test results indicate that the α-Fe2O3 phase of each having a particle size of 269.7 nm, 332.2 nm, 357.9 nm, 412.2 nm. The best quantity is shown at a temperature of 500 °C to form the hematite phase. This result is used as the calcination procedure to obtain a source of Fe ions in the manufacture of Lithium Ferro Phosphate.


2015 ◽  
Vol 1094 ◽  
pp. 15-19
Author(s):  
Lin Xia Yan ◽  
Sen Lin Tian ◽  
Qiu Lin Zhang

Cu-Al catalysts were synthesized by the co-precipitation method to study hydrolysis of hydrogen cyanide. During the synthesis, the impact of Cu/Al molar ratio, pH value and calcination temperature was investigated and the best synthesis condition was found. The results indicate that the remove of hydrogen cyanide first increases and then decreases with increasing Cu/Al molar ratio, pH value and calcination temperature, which reaches the maxima and remains above 95% at 360 min when Cu/Al molar ratio is 2:1, pH value is approximately 8.0 and calcination temperature is 400°C around. The analysis of X-ray diffraction (XRD) shows that Cu content is the main influence factor at Cu/Al molar ratio below 2:1 whereas crystallinity of catalysts is the key factor at Cu/Al molar ratio above 2:1.


2013 ◽  
Vol 724-725 ◽  
pp. 1187-1191
Author(s):  
Yong Gang Wei ◽  
Yun Peng Du ◽  
Kong Zhai Li ◽  
Xing Zhu ◽  
Hua Wang

Pr-Zr mixed oxides prepared by co-precipitation were used as oxygen carriers for converting methane into synthesis gas through gas-solid reactions. The structural evolution and reducibility of Pr-Zr oxygen carriers with calcination temperatures from 600 to 1200°C were investigated by XRD and TPR techniques and correlated to their activity for methane selective oxidation. The Pr-Zr mixed oxides calcined at 600-800°C show outstanding thermostability, and higher calcination temperatures result in phase segregation. Pr0.7Zr0.3O2-δ possesses high temperature stability(<900 °C) and the best appropriate calcination temperature is 800°C for methane gas-solid reaction.


Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 741 ◽  
Author(s):  
Nguyen ◽  
Lee

Synthesis of magnesium aluminate spinel (MgAl2O4) was investigated by employing ball milling and co-precipitation methods. The starting materials (aluminum hydroxides) were obtained from the purified sodium hydroxide leaching solution of black dross. The characteristics of the synthesized spinel was analyzed through X-ray diffraction (XRD), scanning electron microscopy (SEM) images. In this work, the effect of calcination temperature and time on the formation of spinel by the two methods was compared. Calcination temperature showed a great effect on the formation of spinel in both methods. The results showed that the co-precipitation method has many advantages over the ball milling method. In ball milling method, complete conversion of the starting materials to spinel was impossible even at 1500 °C, while complete conversion to spinel was accomplished at 1000 °C for 5 h by the co-precipitation method. The average size of the spinel synthesized at these optimum conditions of the co-precipitation method was about 17 nm. A process can be developed to synthesize spinel from the black dross which is regarded as hazardous materials.


2017 ◽  
Vol 20 (1) ◽  
pp. 021-024 ◽  
Author(s):  
Byeong-Chan Jang ◽  
Ji-Woong Shin ◽  
Jin-Joo Bae ◽  
Jong-Tae Son

In this work, novel composition of Nax[Ni0.6Co0.2Mn0.2]O2 (x = 0.5 and 1.0) layered cathode materials were synthesized by using hydroxide co-precipitation and calcined at 850, 900 and 950 °C. We studied the effects of different sodium contents and calcination temperature on the structural and electrochemical properties of this novel cathode material. The change of calcination temperature and sodium content led to different P2-type, P2/P3-type, P2/O3-type, or O3-type structures. The results indicate better electrochemical perfor-mance of the P2-type cathode materials in terms of high discharge capacity and good cycling performance, when compared to P2/P3, P2/O3, and O3-type cathode materials. Na0.5[Ni0.6Co0.2Mn0.2]O2 electrode calcined at 900 °C exhibited a good capacity of 107.15 mAhg-1 and ca-pacity retention over 73 % after 20 cycle. Characterization of this material will help to develop cathode materials for the Na-ion battery cathode.


2011 ◽  
Vol 412 ◽  
pp. 361-364
Author(s):  
Wei Jun Zhang ◽  
Yuan Feng Huang ◽  
Li Shen ◽  
Jun Liu ◽  
Xiao Qing Luo ◽  
...  

A series of Ba-Al-O/NSR supports were prepared by co-precipitation in this work. The effect of Al/Ba atomic ratio and calcination temperature on the structure and texture of the supports was investigated carefully. The XRD spectra show that Ba is mainly exist in the form of BaAl2O4, and Al exists in Al2O3. The results of SBET indicate that the supports possess relative high specific surface area (70~150 m2/g). The effect of different parameters on the process of supports synthesized was investigated carefully. The results show that the structure and specific surface area of support is significantly depended on calcination temperature.


Sign in / Sign up

Export Citation Format

Share Document