scholarly journals Study on the subsurface damage mechanism of optical quartz glass during single grain scratching

Author(s):  
Ming Li ◽  
Xiaoguang Guo ◽  
Ruifeng Zhai ◽  
Xichun Luo ◽  
Renke Kang ◽  
...  
2017 ◽  
Vol 726 ◽  
pp. 414-418
Author(s):  
Bo Fu ◽  
Hui Wang ◽  
Zhu Feng Shao

The optical quartz glass is widely applied in optical system , photo communications,inertial navigation,etc.It must have high optical homogeneity. Optical homogeneity of the optical quartz glass directly affects the wavefront quality of the optical transmission system, and changes the wavefront aberration of the system. How to accurately determine the optical homogeneity of the quartz glass is especially important. Currently,the method of test for optical homogeneity mainly used by interference principle. This paper analyzes various existing interference measurement method and test equipment. Summarized the advantages and disadvantages of various test methods,using range and measurement accuracy.


2015 ◽  
Vol 14 (01) ◽  
pp. 1-10 ◽  
Author(s):  
Hai Zhou ◽  
Xiaoming Xu ◽  
Xiang Gao ◽  
Yuan Zhang

In this paper, the surface damage mechanism of silicon carbide lapping process was studied. A theoretic model between the depth of subsurface damage and surface scratch of silicon carbide substrate double-side lapping has been built. An experiment of two-sided lapping combining VK-X100/X200 shape measurement laser microscopy system with HF mild chemical etching experiment on SiC substrate was processed to obtain the distribution of surface scratch and subsurface damage layer with depth. The study shows that the thickness of subsurface damage layer decreases as the depth increases, which centrally distributes in the depth of 0–15.6 μm from outer fragmentation and scratch damage layer, which accounted for about 98.6%. The result can help us to optimize processing parameters of silicon carbide substrate double-side lapping to control the depth of subsurface damage layer.


2019 ◽  
Vol 04 (02) ◽  
pp. 1950003 ◽  
Author(s):  
Xiaoguang Guo ◽  
Chong Chen ◽  
Renke Kang ◽  
Zhuji Jin

The mechanical properties (hardness, elastic modulus) and subsurface damage of quartz glass at high temperature are studied by nanoindentation simulation based on molecular dynamics (MD). By heating the quartz crystal model to 3000[Formula: see text]K and annealing to 300[Formula: see text]K twice, the quartz glass model is prepared. According to the nanoindentation simulation results, the hardness of quartz glass decreases by 53.6% and the elastic modulus increases by 10.9% at 1500[Formula: see text]K compared to those at 300[Formula: see text]K. When the temperature rises from 300[Formula: see text]K to 1500[Formula: see text]K, the critical grinding depth of quartz glass increases from nanoscale to micron-scale. The investigation of subsurface damage shows that the damaged layer thickness decreases slightly with the increase of temperature. The damaged layer extends downward under the indenter at lower temperature and extends along the indenter at higher temperature.


2015 ◽  
Vol 27 (2) ◽  
pp. 24150
Author(s):  
翟昌恒 Zhai Changheng ◽  
郭晓光 Guo Xiaoguang ◽  
金洙吉 Jin Zhuji ◽  
郭东明 Guo Dongming ◽  
张亮 Zhang Liang

Author(s):  
Chen Li ◽  
Feihu Zhang ◽  
Zhaokai Ma

In order to explore the grinding surface deformation and subsurface damage mechanism for reaction-bonded SiC ceramics, the grinding experiment for reaction-bonded SiC ceramics was carried out under the condition of different grinding depths using two different kinds of grain sizes of grinding wheel. The ground surface morphology of specimen was observed using the field emission scanning electron microscope (5000 ×), and the value of surface roughness Rz was measured by the confocal microscope, which found that there were the brittle removal region and the plastic removal region on the ground surface of reaction-bonded SiC ceramics and it could improve the ground surface quality and proportion of ductile region using the fine grinding wheel and reducing the grinding depth. The specimen was polished by the ion cross section polisher and the ground subsurface was analyzed by the field emission scanning electron microscope, which found that there were transgranular fracture, intergranular fracture, crack bifurcation, ladder-shaped crack and other phenomenon in the grinding process. And it could control the subsurface damage depth using the fine grinding wheel and reducing the grinding depth. The relationship between surface roughness and subsurface damage was analyzed based on the indentation theory, which found that the simulation results were close to the experiment results when the value of m is in the range of 1/8–1/4. When m is 0.2143 calculated by genetic algorithm, the simulation results are the best.


Author(s):  
Houfu Dai ◽  
Shaobo Li ◽  
Genyu Chen

Three-dimension molecular dynamics (MD) simulation is employed to investigate the nanoscratching process of monocrystalline silicon with diamond tools. The effects of tool geometry on subsurface damage and scratching surface integrity are investigated by analyzing phase transformation, chip, defect atoms, hydrostatic stress, von Mises stress and workpiece deformation. In addition, a theoretical analytical model to study the subsurface damage mechanism by analyzing the zone size of phase transformation and normal force with diamond tools at different half-apex angles on silicon surfaces is established. The results show that a bigger half apex angle causes a higher hydrostatic stress, a larger chip volume, a higher temperature and a higher potential energy, and increases subsurface damage. The results also reveal that the evolution of crystalline phases is consistent with the distribution of hydrostatic stress and temperature. In addition, tip scratching with a bigger half-apex angle would result in a larger scratching force and a bigger phase transformation zone, which is in good agreement with the results of the theoretical analytical model.


2021 ◽  
Vol 293 ◽  
pp. 117090
Author(s):  
Bin Lin ◽  
Shi-peng Li ◽  
Zhong-Chen Cao ◽  
Yunfei Zhang ◽  
Xiang-Min Jiang

2017 ◽  
Vol 872 ◽  
pp. 19-24
Author(s):  
Zong Chao Geng ◽  
Shang Gao ◽  
Ren Ke Kang ◽  
Zhi Gang Dong

Quartz glass is a typical hard and brittle material. During the manufacturing process of quartz glass components, ultra-precision grinding is widely used due to its high throughput and good dimensional accuracies. However, grinding will unavoidably induce large surface and subsurface damage. In this study, the surface and subsurface damage characteristics of quartz glass substrates ground by diamond wheels with different grit sizes were investigated in terms of surface roughness, surface topography, subsurface microcrack characteristic, and subsurface damage depth. Discussion was also provided to explore corresponding reasons of surface and subsurface damage induced by diamond grinding wheels with different grit sizes of #1500 and #2000. The experiment results showed that the surface roughness, surface damage, and subsurface damage depth induced by #2000 quartz glass was ground by #1500 diamond grinding wheel, and in ductile mode when ground by #2000 diamond grinding wheel.


Sign in / Sign up

Export Citation Format

Share Document