Linear tunable NIR emission via selective doping of Ni2+ ion into ZnX2O4 (X=Al, Ga, Cr) spinel matrix

Author(s):  
Guanliang Yu ◽  
Weirong Wang ◽  
Chun Jiang
2018 ◽  
Author(s):  
Dinesh Mishra ◽  
Sisi Wang ◽  
Zhicheng Jin ◽  
Eric Lochner ◽  
Hedi Mattoussi

<p>We describe the growth and characterization of highly fluorescing, near-infrared-emitting nanoclusters made of bimetallic Au<sub>25-x</sub>Ag<sub>x</sub> cores, prepared using various monothiol-appended hydrophobic and hydrophilic ligands. The reaction uses well-defined triphenylphosphine-protected Au<sub>11</sub> clusters (as precursors), which are reacted with Ag(I)-thiolate complexes. The prepared nanoclusters are small (diameter < 2nm, as characterized by TEM) with emission peak at 760 nm and long lifetime (~12 µs). The quantum yield measured for these materials was 0.3 - 0.4 depending on the ligand. XPS measurements show the presence of both metal atoms in the core, with measured binding energies that agree with reported values for nanocluster materials. The NIR emission combined with high quantum yield, small size and ease of surface functionalization afforded by the coating, make these materials suitable to implement investigations that address fundamental questions and potentially useful for biological sensing and imaging applications.<br></p>


2021 ◽  
Author(s):  
Abhineet Verma ◽  
Sk Saddam Hossain ◽  
Sailaja S Sunkari ◽  
Joseph Reibenspies ◽  
Satyen Saha

Lanthanides (LnIII) are well known for their characteristic emission in the Near-Infrared Region (NIR). However, direct excitation of lanthanides is not feasible as described by Laporte’s parity selection rule. Here,...


2021 ◽  
Author(s):  
xiudi wu ◽  
shuang zhao ◽  
Liang Zhang ◽  
Langping Dong ◽  
Yonghui Xu ◽  
...  

Abstract:Gd2GaSbO7:Cr3+,Yb3+ phosphors with efficient broadband NIR emission were prepared by solid-state reaction. Under the excitation of 448 nm, Gd2GaSbO7:Cr3+ (GGS:Cr3+) phosphor exhibits a broadband NIR emission band centered at approximately...


CrystEngComm ◽  
2021 ◽  
Author(s):  
Fen Xiao ◽  
Chengning Xie ◽  
Shikun Xie ◽  
Rongxi Yi ◽  
Huiling Yuan ◽  
...  

Broadband near infrared (NIR) luminescent materials have attracted great attention recently for the advance smart optical source of NIR spectroscopy. In this work, a broadband NIR emission from 650 nm...


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2898
Author(s):  
Ilya S. Kritchenkov ◽  
Anastasia I. Solomatina ◽  
Daria O. Kozina ◽  
Vitaly V. Porsev ◽  
Victor V. Sokolov ◽  
...  

Synthesis of biocompatible near infrared phosphorescent complexes and their application in bioimaging as triplet oxygen sensors in live systems are still challenging areas of organometallic chemistry. We have designed and synthetized four novel iridium [Ir(N^C)2(N^N)]+ complexes (N^C–benzothienyl-phenanthridine based cyclometalated ligand; N^N–pyridin-phenanthroimidazol diimine chelate), decorated with oligo(ethylene glycol) groups to impart these emitters’ solubility in aqueous media, biocompatibility, and to shield them from interaction with bio-environment. These substances were fully characterized using NMR spectroscopy and ESI mass-spectrometry. The complexes exhibited excitation close to the biological “window of transparency”, NIR emission at 730 nm, and quantum yields up to 12% in water. The compounds with higher degree of the chromophore shielding possess low toxicity, bleaching stability, absence of sensitivity to variations of pH, serum, and complex concentrations. The properties of these probes as oxygen sensors for biological systems have been studied by using phosphorescence lifetime imaging experiments in different cell cultures. The results showed essential lifetime response onto variations in oxygen concentration (2.0–2.3 μs under normoxia and 2.8–3.0 μs under hypoxia conditions) in complete agreement with the calibration curves obtained “in cuvette”. The data obtained indicate that these emitters can be used as semi-quantitative oxygen sensors in biological systems.


MRS Advances ◽  
2017 ◽  
Vol 2 (14) ◽  
pp. 759-766 ◽  
Author(s):  
Kimberly Sablon ◽  
Andrei Sergeev ◽  
Xiang Zhang ◽  
Vladimir Mitin ◽  
Michael Yakimov ◽  
...  

ABSTRACTNovel approach to optimize quantum dot (QD) materials for specific optoelectronic applications is based on engineering of nanoscale potential profile, which is created by charged QDs. The nanoscale barriers prevent capture of photocarriers and drastically increase the photoelectron lifetime, which in turn strongly improves the photoconductive gain, responsivity, and sensitivity of photodetectors and decreases the nonradiative recombination losses of photovoltaic devices. QD charging may be created by various types of selective doping. To investigate effects of selective doping, we model, fabricated, and characterized AlGaAs/InAs QD structures with n-doping of QD layers, doping of interdot layers, and bipolar doping, which combines p-doping of QD layers with strong n-doping of the interdot space. We have measured spectral characteristics of photoresponse, photocurrent and dark current. The experimental data show that providing the same electron population of QDs, the bipolar doping creates the most contrasting nanoscale profile with the highest barriers around dots.


2018 ◽  
Vol 732 ◽  
pp. 64-69 ◽  
Author(s):  
P.K. Tawalare ◽  
V.B. Bhatkar ◽  
R.A. Talewar ◽  
C.P. Joshi ◽  
S.V. Moharil

2007 ◽  
Vol 33 (10) ◽  
pp. 869-871 ◽  
Author(s):  
V. V. Vainberg ◽  
Yu. N. Gudenko ◽  
V. N. Poroshin ◽  
V. N. Tulupenko ◽  
N. N. Cheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document