Non hydrolizable aluminum nitride powders surface modified by silicic acids

Author(s):  
Guangcheng Yu ◽  
Jianjun Xie ◽  
Shun Wang ◽  
Yu Wang ◽  
Tun Wang ◽  
...  
2012 ◽  
Vol 512-515 ◽  
pp. 293-296 ◽  
Author(s):  
Jian Guo ◽  
Tai Qiu ◽  
Jian Yang ◽  
Yong Bao Feng

M-AlN (surface modified aluminum nitride powder) suspensions for aqueous gelcasting were prepared Using NH4PAA as dispersant. The effects of pH value, NH4PAA amount and solid content on the rheological behavior of M-AlN suspensions were investigated. The results showed that low viscosity M-AlN aqueous suspensions with high solid content up to 55vol.% were obtained under the condition that the amount of NH4PAA was 0.9 wt. % of M-AlN powder, and pH value was about at 6.8. In spite of this, these suspensions still show a viscosity lower than 0.12 Pa•s at 100s-1, suggesting a good fluidity which can satisfy the requirement of gelcasting.


Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 148 ◽  
Author(s):  
Zelalem Lule ◽  
Jooheon Kim

Biodegradable polymers and their composites are considered promising materials for replacing conventional polymer plastics in various engineering fields. In this study, poly(butylene succinate) (PBS) composites filled with 5% aluminum nitride nanoparticles were successfully fabricated. The aluminum nitride nanoparticles were surface-modified to improve their interaction with the PBS matrix. Field-emission scanning electron microscopy revealed that the nanocomposites with surface-modified nanoparticles had better interface interaction and dispersion in the polymer matrix than those with untreated nanoparticles. The PBS/modified AlN nanocomposites exhibited maximal thermal conductivity enhancement, 63.7%, compared to the neat PBS. In addition, other thermomechanical properties of the PBS nanocomposites were investigated in this study. The nanocomposites also showed a superior storage modulus compared to the neat PBS matrix. In this work, a PBS nanocomposite with suitable thermal conductivity that can be used in various electronic fields was fabricated.


Author(s):  
P. S. Sklad

Over the past several years, it has become increasingly evident that materials for proposed advanced energy systems will be required to operate at high temperatures and in aggressive environments. These constraints make structural ceramics attractive materials for these systems. However it is well known that the condition of the specimen surface of ceramic materials is often critical in controlling properties such as fracture toughness, oxidation resistance, and wear resistance. Ion implantation techniques offer the potential of overcoming some of the surface related limitations.While the effects of implantation on surface sensitive properties may be measured indpendently, it is important to understand the microstructural evolution leading to these changes. Analytical electron microscopy provides a useful tool for characterizing the microstructures produced in terms of solute concentration profiles, second phase formation, lattice damage, crystallinity of the implanted layer, and annealing behavior. Such analyses allow correlations to be made with theoretical models, property measurements, and results of complimentary techniques.


Author(s):  
D. L. Callahan

Modern polishing, precision machining and microindentation techniques allow the processing and mechanical characterization of ceramics at nanometric scales and within entirely plastic deformation regimes. The mechanical response of most ceramics to such highly constrained contact is not predictable from macroscopic properties and the microstructural deformation patterns have proven difficult to characterize by the application of any individual technique. In this study, TEM techniques of contrast analysis and CBED are combined with stereographic analysis to construct a three-dimensional microstructure deformation map of the surface of a perfectly plastic microindentation on macroscopically brittle aluminum nitride.The bright field image in Figure 1 shows a lg Vickers microindentation contained within a single AlN grain far from any boundaries. High densities of dislocations are evident, particularly near facet edges but are not individually resolvable. The prominent bend contours also indicate the severity of plastic deformation. Figure 2 is a selected area diffraction pattern covering the entire indentation area.


Author(s):  
Daniel Callahan ◽  
G. Thomas

Oxygen impurities may significantly influence the properties of nitride ceramics with a strong dependence on the microstructural distribution of the impurity. For example, amorphous oxygen-rich grain boundary phases are well-known to cause high-temperature mechanical strength degradation in silicon nitride whereas solutionized oxygen is known to decrease the thermal conductivity of aluminum nitride. Microanalytical characterization of these impurities by spectral methods in the AEM is complicated by reactions which form oxygen-rich surface phases not representative of the bulk material. Furthermore, the impurity concentrations found in higher quality ceramics may be too low to measure by EDS or PEELS. Consequently an alternate method for the characterization of impurities in these ceramics has been investigated.Convergent beam electron diffraction (CBED) is a promising technique for the study of impurity distributions in aluminum nitride ceramics. Oxygen is known to enter into stoichiometric solutions with AIN with a consequent decrease in lattice parameter.


Author(s):  
S. Cao ◽  
A. J. Pedraza ◽  
L. F. Allard

Excimer-laser irradiation strongly modifies the near-surface region of aluminum nitride (AIN) substrates. The surface acquires a distinctive metallic appearance and the electrical resistivity of the near-surface region drastically decreases after laser irradiation. These results indicate that Al forms at the surface as a result of the decomposition of the Al (which has been confirmed by XPS). A computer model that incorporates two opposing phenomena, decomposition of the AIN that leaves a metallic Al film on the surface, and thermal evaporation of the Al, demonstrated that saturation of film thickness and, hence, of electrical resistance is reached when the rate of Al evaporation equals the rate of AIN decomposition. In an electroless copper bath, Cu is only deposited in laser-irradiated areas. This laser effect has been designated laser activation for electroless deposition. Laser activation eliminates the need of seeding for nucleating the initial layer of electroless Cu. Thus, AIN metallization can be achieved by laser patterning followed by electroless deposition.


2020 ◽  
pp. 114-119

Experimental and theoretical study Porphyrin-grafted ZnO nanowire arrays were investigated for organic/inorganic hybrid solar cell applications. Two types of porphyrin – Tetra (4-carboxyphenyle) TCPP and meso-Tetraphenylporphine (Zinc-TPP)were used to modify the nanowire surfaces. The vertically aligned nanowires with porphyrin modifications were embedded in graphene-enriched poly (3-hexylthiophene) [G-P3HT] for p-n junction nanowire solar cells. Surface grafting of ZnO nanowires was found to improve the solar cell efficiency. There are different effect for the two types of porphyrin as results of Zn existing. Annealing effects on the solar cell performance were investigated by heating the devices up to 225 °C in air. It was found that the cell performance was significantly degraded after annealing. The degradation was attributed to the polymer structural change at high temperature as evidenced by electrochemical impedance spectroscopy measurements.


Sign in / Sign up

Export Citation Format

Share Document