Structural design and toughening mechanism of laminated graphene ceramic tool materials

Author(s):  
Benshuai Chen ◽  
Guangchun Xiao ◽  
Mingdong Yi ◽  
Jingjie Zhang ◽  
Hui Chen ◽  
...  
2014 ◽  
Vol 900 ◽  
pp. 130-133 ◽  
Author(s):  
Hai Xia Huang ◽  
Yi Hua Feng ◽  
Fu Meng Li ◽  
Hao Sun

In this paper, the sorts, mechanical property, strengthening and toughening mechanism of ceramic cutting tool materials were summarized in the present study, especially the Si3N4 based nanocomposite and Al2O3 based ceramic cutting tool materials. The problems to be solved in the field were suggested. It would act as the foundation in the future research of ceramic cutting tool materials.


Wear ◽  
1989 ◽  
Vol 135 (1) ◽  
pp. 147-159 ◽  
Author(s):  
S.K. Bhattacharyya ◽  
E.O. Ezugwu ◽  
A. Jawaid

2010 ◽  
Vol 443 ◽  
pp. 324-329 ◽  
Author(s):  
Bin Zou ◽  
Chuan Zhen Huang ◽  
Han Lian Liu ◽  
Jin Peng Song

Si3N4/TiN nanocomposite tool and Si3N4/Ti(C7N3) nanocomposite tool were prepared. The cutting performance and wear mechanism of Si3N4-based nanocomposite ceramic tool was investigated by comparison with a commercial sialon ceramic tool in machining of 45 steel. Si3N4-based nanocomposite ceramic tool exhibits the better wear resistance than sialon at the relatively high cutting speed. The increased cutting performance of Si3N4-based nanocomposite ceramic tool is ascribed to the higher mechanical properties. Nano-particles can refine the matrix grains and improve the bonding strength among the matrix grains of Si3N4-based nanocomposite ceramic tool materials. It contributes to an improved wear resistance of the cutting tools during machining.


2012 ◽  
Vol 500 ◽  
pp. 537-543 ◽  
Author(s):  
Bin Fang ◽  
Chuan Zhen Huang ◽  
Hong Tao Zhu ◽  
Chong Hai Xu

The new Monte Carlo Potts model that couples with fabrication parameters and considers pores and additives has been developed in order to simulate the fabrication of single-phase ceramics tool materials. The microstructure evolution for single-phase Al2O3 ceramic tool materials is simulated with the different technology parameters. At the same time, the single-phase Al2O3 ceramic tool materials are fabricated with the corresponding technology parameters. The errors of grain size between the simulated and the experimental is 12.1 and18.2%.


2010 ◽  
Vol 431-432 ◽  
pp. 523-526
Author(s):  
Han Lian Liu ◽  
Chuan Zhen Huang ◽  
Shou Rong Xiao ◽  
Hui Wang ◽  
Ming Hong

Under the liquid-phase hot-pressing technique, the multi-scale titanium diboride matrix nanocomposite ceramic tool materials were fabricated by adding both micro-scale and nano-scale TiN particles into TiB2 with Ni and Mo as sintering aids. The effect of content of nano-scale TiN and sintering temperature on the microstructure and mechanical properties was studied. The result showed that flexural strength and fracture toughness of the composites increased first, and then decreased with an increase of the content of nano-scale TiN, while the Vickers hardness decreased with an increase of the content of nano-scale TiN. The optimal mechanical properties were flexural strength 742 MPa, fracture toughness 6.5 MPa•m1/2 and Vickers hardness 17GPa respectively. The intergranular and transgranular fracture mode were observed in the composites. The metal phase can cause ductility toughening and crack bridging, while crack deflection and transgranular fracture mode could be brought by micro-scale TiN and nano-scale TiN respectively.


2011 ◽  
Vol 335-336 ◽  
pp. 688-694
Author(s):  
Xiao Hui Zhu ◽  
Chuan Zhen Huang ◽  
Han Lian Liu ◽  
Bin Zou ◽  
Hong Tao Zhu

Based on the microstructure results of Monte Carlo simulation, a three-dimensional grid model is built up, and imported into the finite element software with C++ language to analyze the mechanical properties of ceramic tool material. The stress field and residual stress of single-phase and multiphase ceramics have been analyzed by the computer simulation technology.


2014 ◽  
Vol 800-801 ◽  
pp. 511-515
Author(s):  
Xian Hua Tian ◽  
Jun Zhao ◽  
Shuai Liu ◽  
Zhao Chao Gong

Close attention has been paid to Functional graded materials (FGMs) worldwide for their novel design ideas and outstanding properties. To verify the advantage of FGMS in the design of ceramic tool materials, Si3N4/(W, Ti)C nanocomposite ceramic tool materials with homogenous and graded structure were fabricated by hot pressing and sintering technology. The flexural strength, fracture toughness and hardness of the sintered composites were tested and compared. The experimental results showed that the graded structure improved mechanical properties of the ceramic tool materials, especially the flexural strength and fracture toughness. The introduction of residual compressive stress in the surface layer contributes to the improvement of the properties .


2011 ◽  
Vol 50 (12) ◽  
pp. 3334-3341 ◽  
Author(s):  
Song Hao ◽  
Chuanzhen Huang ◽  
Bin Zou ◽  
Jun Wang ◽  
Hanlian Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document