Cutting Performance and Wear Mechanism of Si3N4-Based Nanocomposite Ceramic Tool

2010 ◽  
Vol 443 ◽  
pp. 324-329 ◽  
Author(s):  
Bin Zou ◽  
Chuan Zhen Huang ◽  
Han Lian Liu ◽  
Jin Peng Song

Si3N4/TiN nanocomposite tool and Si3N4/Ti(C7N3) nanocomposite tool were prepared. The cutting performance and wear mechanism of Si3N4-based nanocomposite ceramic tool was investigated by comparison with a commercial sialon ceramic tool in machining of 45 steel. Si3N4-based nanocomposite ceramic tool exhibits the better wear resistance than sialon at the relatively high cutting speed. The increased cutting performance of Si3N4-based nanocomposite ceramic tool is ascribed to the higher mechanical properties. Nano-particles can refine the matrix grains and improve the bonding strength among the matrix grains of Si3N4-based nanocomposite ceramic tool materials. It contributes to an improved wear resistance of the cutting tools during machining.

2010 ◽  
Vol 443 ◽  
pp. 244-249 ◽  
Author(s):  
Yong Hui Zhou ◽  
Jun Zhao ◽  
Xing Ai

An Al2O3-based composite ceramic cutting tool material reinforced with (W, Ti)C micro-particles and Al2O3 micro-nano-particles was fabricated by using hot-pressing technique, the composite was denoted as AWT. The cutting performance, failure modes and mechanisms of the AWT micro-nano-composite ceramic tool were investigated via continuous turning of hardened AISI 1045 steel in comparison with those of an Al2O3/(W, Ti)C micro-composite ceramic tool SG-4 and a cemented carbide tool YS8. Worn and fractured surfaces of the cutting tools were characterized by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results of continuous turning revealed that tool lifetime of the AWT ceramic tool was higher than that of the SG-4 and YS8 tools at all the tested cutting speeds. The longer tool life of the AWT composite ceramic tool was attributed to its synergistic strengthening/toughening mechanisms induced by the (W, Ti)C micro-particles and Al2O3 nano-particles.


2011 ◽  
Vol 325 ◽  
pp. 309-314
Author(s):  
Han Lian Liu ◽  
Ming Hong ◽  
Chuan Zhen Huang ◽  
Bin Zou

TiC-based ceramic cutting tools with three different particle size levels of Al2O3 additives were fabricated and tested. Theses tool materials were identified as TA, TA10A5 and TA30A5 respectively in this study. Another commercial cutting material identified as LT55 was used in this study as baseline to investigate cutting performance by comparing the flank wear size. The experimental results showed that multi-scale nanocomposite ceramic tool TA10A5 had much better wear resistance than the other tools when turning at a lower speed. The wear mechanisms were mainly adhesive wear in the rake face. While cutting at a higher speed, the breakage failure occurred for the tools TA10A5 and TA30A5.


2007 ◽  
Vol 534-536 ◽  
pp. 869-872 ◽  
Author(s):  
Yusuf Ozcatalbas ◽  
Ersin Bahceci ◽  
Mehmet Turker

In this study, aluminum-based composites reinforced with various amounts of α-Si3N4 were produced by powder metallurgy (P/M). The machinability properties of MMCs were determined by means of cutting forces and surface roughness. Machining tests were carried out by using PCD and K10 cutting tools. Increasing of Si3N4 volume fraction in the matrix resulted in a decrease of the surface roughness and turning forces. PCD cutting tools showed better cutting performance than K10 tools. Surface roughness and turning forces were decreased significantly by PCD tool.


2019 ◽  
Vol 13 (3) ◽  
pp. 213-217
Author(s):  
Sanja Šolić ◽  
Zdravko Schauperl ◽  
Vlado Tropša

High speed steel (HSS) is a very important industrial tool material and has been constantly improved for different wear resistance applications and cutting tools, i.e. drills, milling cutters, hobs and for the cutting tools in which the economical cutting speed is too low for choosing the carbide tools. The properties of HSS depend significantly on the parameters of the conducted heat treatment. In this paper, the influence of deep cryogenic treatment in combination with nitriding of metallurgical powder metallurgy HSS on the wear resistance was measured. Additionally, the cutting performance in a single point cutting tool machinability test at the configuration of the dry low-speed turning of steel was investigated. The results showed that deep cryogenic treatment itself, and in combination with nitriding, resulted in the reduction of the wear rate. The results of the single point cutting tool machinability test showed that deep cryogenic treated and nitrided HSS inserts performed worse than the classically heat-treated inserts and deep cryogenic treated HSS inserts exhibited approximately the same flank wear as the nitrided ones.


2013 ◽  
Vol 712-715 ◽  
pp. 391-394 ◽  
Author(s):  
Anatoly S. Vereschaka ◽  
Sergey Nikolaevich Grigoriev ◽  
Ekaterina S. Sotova ◽  
Alexey Anatolevich Vereschaka

The paper studies the influence of properties of a tool made of mixed ceramic by applying modifying with nanoscale multi-layered coatings on machinability of hardened tool steel XVG. The paper also examines the influence of cutting speed on wear resistance of mixed ceramic with nanoscale multilayered coatings. The mathematical models that found out the dependence of tool life of a ceramic tool with coating from cutting speed were developed.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 157
Author(s):  
Jarosław Mikuła ◽  
Daniel Pakuła ◽  
Ludwina Żukowska ◽  
Klaudiusz Gołombek ◽  
Antonín Kříž

The article includes research results for the functional properties achieved for a wide range of sintered tool materials, including sintered carbides, cermets and three types of Al2O3 oxide tool ceramics ((Al2O3 + ZrO2, Al2O3 + TiC and Al2O3 + SiC(w)) with (Ti,Al)N coating deposited in the cathodic arc evaporation (CAE-PVD) method and comparison with uncoated tool materials. For all coated samples, a uniform wear pattern on tool shank was observed during metallographic analysis. Based on the scanning electron microscope (SEM) metallographic analysis, it was found that the most common types of tribological defects identified in tested materials are: mechanical defects and abrasive wear of the tool side, crater formation on the tool face, cracks on the tool side, chipping on the cutting edge and built-up edge from chip fragments. Deposition of (Ti,Al)N coating on all tested substrates increases the wear resistance and also limits the exceeding of critical levels of permanent stresses. It even increases the tool life many times over. Such a significant increase in tool life results, among other things, from a large increase in microhardness of PVD coated materials compared to uncoated samples, increased resistance to thermal and chemical abrasion, improved chip formation and removal process conditions. Use of hard coatings applied to sintered tool materials is considered to be one of the most important achievements in improving the functional properties of cutting tools and can still be developed by improving the coating structure solutions (sorted and nanocrystalline structures) and extending the range of coating applications (Ti,Al)N in a variety of substrates.


2012 ◽  
Vol 723 ◽  
pp. 56-61
Author(s):  
Yong Hui Zhou ◽  
Jun Zhao ◽  
Xiao Bin Cui

An Al2O3-based micro-nano-composite ceramic cutting tool material reinforced with (W, Ti)C micro-particles and Al2O3 micro-nano-particles was fabricated by using hot-pressing technique, the composite was denoted as AWT. The cutting performance, failure modes and mechanisms of the AWT micro-nano-composite ceramic tool were investigated via intermittent turning of hardened AISI 1045 steel (44~48 HRC) in comparison with those of an Al2O3/(W, Ti)C micro-composite ceramic tool SG-4 and a cemented carbide tool YS8. Worn and fractured surfaces of the cutting tools were characterized by scanning electron microscopy (SEM). The results of intermittent turning revealed that shock resistance of the AWT ceramic tool was higher than that of the SG-4 and YS8 tools at all the tested cutting speeds. The excellent shock resistance of the AWT composite ceramic tool was attributed to its synergistic strengthening/toughening mechanisms induced by the (W, Ti)C micro-particles and Al2O3 nano-particles.


2014 ◽  
Vol 490-491 ◽  
pp. 358-361
Author(s):  
Yan Zheng Li ◽  
Zhong De Shan ◽  
Jun Zhao ◽  
Jing Yun Xiong

In this paper, based on the experiments of high speed dry cutting nickel alloyed ductile iron with different nickel contents by graded ceramic tool, the cutting performance and wear mechanisms of graded ceramic tool were investigated. Results reveal that with the increase of cutting speed and nickel content the wear of graded ceramic tool is increased, wear mechanisms are transformated spalling and cohesive wear from abrasive wear, and chip shapes are turned into long arc segment from short segment.


2018 ◽  
Vol 44 (13) ◽  
pp. 15495-15502 ◽  
Author(s):  
Da-Wang Tan ◽  
Wei-Ming Guo ◽  
Hong-Jian Wang ◽  
Hua-Tay Lin ◽  
Cheng-Yong Wang

2016 ◽  
Vol 23 (6) ◽  
pp. 743-750 ◽  
Author(s):  
Ergün Ekici ◽  
Mahmut Gülesin

AbstractIn this study, the effects of the particle reinforcement ratio on cutting forces and surface roughness were investigated when milling particle-reinforced metal matrix composite (MMCp) produced by hot pressing with different cutting tools. Alumix 123 alloy as the matrix material and B4C particles with an average size of 27 μm and 5%, 10% and 15% ratio as reinforcing elements were used for the manufacture of composite materials. The experiments were carried out in dry cutting conditions with four different cutting speeds, constant feed rate and depth of cut. Changes depending on the increased reinforcement ratio in cutting forces and surface roughness values were investigated; the effects of 10% B4C reinforced composite on tool wear were also examined. It was observed that cutting forces increased with the increase in cutting speed and particle ratio with carbide cutting tools, and it was seen that the cutting forces on the cutting tools decreased when cutting speed decreased and the cutting forces increased as the reinforcement ratios increased. In addition, with increasing the cutting speed, the surface roughness of the machined surfaces of composite samples increased with the carbide tools, while the cubic boron nitride (CBN) tools have the opposite effect. While it was seen that flank and crater wear occurred on the cemented carbide cutting tools, abrasive, adhesive and other wear mechanism tools in addition to the main wear mechanism, no remarkable flank and crater wear occurred on CBN cutting tools.


Sign in / Sign up

Export Citation Format

Share Document