Mechanical reinforcement of 3D printed cordierite-zirconia composites

Author(s):  
Cheng Zhang ◽  
Zhongqiang Luo ◽  
Jiwei Cao ◽  
Jingkun Yuan ◽  
Mingguang Jiang ◽  
...  
2021 ◽  
pp. 1-22
Author(s):  
Nectarios Vidakis ◽  
Markos Petousis ◽  
Emanuel Velidakis ◽  
Nikolaos Mountakis ◽  
Peder Erik Fischer-Griffiths ◽  
...  

2021 ◽  
Vol 877 ◽  
pp. 67-72
Author(s):  
Niño B. Felices ◽  
Bryan B. Pajarito

Epoxysilane-treated muscovite (ETM) was used as reinforcing filler to 3D-printed acrylonitrile butadiene styrene (ABS) via fused deposition modeling (FDM). Its effects to the mechanical and thermal properties of ABS were investigated. ETM was loaded at 1, 3, and 5wt%. ABS/ETM composites were characterized via scanning electron microscopy (SEM), tensile test, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Mechanical reinforcement of ABS was observed for ABS/ETM composites loaded at 1 and 3 wt% wherein it was noted that the tensile strength and elastic modulus increased by up to 83.6% and 76.6%, respectively. Reinforcement was brought by interfacial adhesion of ETM with the ABS matrix. There was a sharp decline in mechanical properties for ABS/ETM composites loaded at 5wt% due to agglomeration of ETM in the matrix and discontinuities in the printed layers. The glass transition temperature (Tg) of ABS increased and the onset of its degradation shifted towards higher temperatures with the addition of ETM. It can be concluded that the addition of ETM to ABS for FDM 3D printing improved its mechanical and thermal properties.


2021 ◽  
Vol 144 (4) ◽  
Author(s):  
Dylan Joralmon ◽  
Evangeline Amonoo ◽  
Yizhen Zhu ◽  
Xiangjia Li

Abstract Lightweight and cost-effective polymer matrix composites (PMCs) with extraordinary mechanical performance will be a key to the next generation of diverse industrial applications, such as aerospace, electric automobile, and biomedical devices. Limpet teeth made of mineral-polymer composites have been proved as nature’s strongest material due to the unique hierarchical architectures of mineral fiber alignment. Here, we present an approach to build limpet teeth inspired structural materials with precise control of geometric morphologies of microstructures by magnetic field-assisted 3D printing (MF-3DP). α-Iron (III) oxide-hydroxide nanoparticles (α-FeOOHs) are aligned by the magnetic field during 3D printing and aligned α-FeOOHs (aFeOOHs) bundles are further grown to aligned goethite-based bundles (aGBs) by rapid thermal treatment after printing. The mechanical reinforcement of aGBs in PMCs can be modulated by adjusting the geometric morphology and alignment of α-FeOOHs encapsulated inside the 3D printed PMCs. In order to identify the mechanical enhancement mechanism, physics-based modeling, simulation, and tests were conducted, and the results further guided the design of bioinspired goethite-based PMCs. The correlation of the geometric morphology of self-assembled α-FeOOHs, curing characteristics of α-FeOOHs/polymer composite, and process parameters were identified to establish the optimal design of goethite-based PMCs. The 3D printed PMCs with aGBs show promising mechanical reinforcement compared with PMCs without aGBs. This study opens intriguing perspectives for designing high strength 3D printed PMCs on the basis of bioinspired architectures with customized configurations.


Author(s):  
Dylan Joralmon ◽  
Evangeline Amonoo ◽  
Yizhen Zhu ◽  
Xiangjia Li

Abstract Lightweight and cost-effective polymer matrix composites (PMCs) with extraordinary mechanical performance will be a key to the next generation of diverse industrial applications such as aerospace, electric automobile, and biomedical devices. Limpet teeth made of mineral-polymer composites have been proved as nature’s strongest material due to the unique hierarchical architectures of mineral fiber alignment. Here, we present an approach to build limpet teeth inspired structural materials with precise control of geometric morphologies of microstructures by magnetic field-assisted 3D printing (MF-3DP). α-Iron (III) oxide-hydroxide nanoparticles (α-FeOOHs) are aligned by the magnetic field during 3D printing and aligned α-FeOOHs bundles are further grown to aligned goethite-based bundles (aGBs) by rapid thermal treatment after printing. The mechanical reinforcement of goethite-based fillers in PMCs can be modulated by adjusting the geometric morphology and alignment of mineral particles encapsulated inside the 3D printed PMCs. In order to identify the mechanical enhancement mechanism, physics-based modeling, simulation, and tests were conducted and the results further guided the design of bioinspired goethite-based PMCs. The correlation of the geometric morphology of self-assembled α-FeOOHs, curing characteristics of α-FeOOHs/polymer composite, and process parameters were identified to establish the optimal design of goethite-based PMCs. The 3D-printed PMCs with aGBs show promising mechanical reinforcement. This study opens intriguing perspectives for designing high strength 3D printed PMCs on the basis of bioinspired architectures with customized configurations.


2019 ◽  
Vol 5 (4) ◽  
pp. eaau9490 ◽  
Author(s):  
Yang Yang ◽  
Xiangjia Li ◽  
Ming Chu ◽  
Haofan Sun ◽  
Jie Jin ◽  
...  

Lightweight and strong structural materials attract much attention due to their strategic applications in sports, transportation, aerospace, and biomedical industries. Nacre exhibits high strength and toughness from the brick-and-mortar–like structure. Here, we present a route to build nacre-inspired hierarchical structures with complex three-dimensional (3D) shapes by electrically assisted 3D printing. Graphene nanoplatelets (GNs) are aligned by the electric field (433 V/cm) during 3D printing and act as bricks with the polymer matrix in between as mortar. The 3D-printed nacre with aligned GNs (2 weight %) shows lightweight property (1.06 g/cm3) while exhibiting comparable specific toughness and strength to the natural nacre. In addition, the 3D-printed lightweight smart armor with aligned GNs can sense its damage with a hesitated resistance change. This study highlights interesting possibilities for bioinspired structures, with integrated mechanical reinforcement and electrical self-sensing capabilities for biomedical applications, aerospace engineering, as well as military and sports armors.


2019 ◽  
Vol 11 (3) ◽  
pp. 035028 ◽  
Author(s):  
Onur Bas ◽  
Felix Hanßke ◽  
Jing Lim ◽  
Akhilandeshwari Ravichandran ◽  
Erhard Kemnitz ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1663
Author(s):  
Arnaud Kamdem Tamo ◽  
Ingo Doench ◽  
Lukas Walter ◽  
Alexandra Montembault ◽  
Guillaume Sudre ◽  
...  

Soft tissues are commonly fiber-reinforced hydrogel composite structures, distinguishable from hard tissues by their low mineral and high water content. In this work, we proposed the development of 3D printed hydrogel constructs of the biopolymers chitosan (CHI) and cellulose nanofibers (CNFs), both without any chemical modification, which processing did not incorporate any chemical crosslinking. The unique mechanical properties of native cellulose nanofibers offer new strategies for the design of environmentally friendly high mechanical performance composites. In the here proposed 3D printed bioinspired CNF-filled CHI hydrogel biomaterials, the chitosan serves as a biocompatible matrix promoting cell growth with balanced hydrophilic properties, while the CNFs provide mechanical reinforcement to the CHI-based hydrogel. By means of extrusion-based printing (EBB), the design and development of 3D functional hydrogel scaffolds was achieved by using low concentrations of chitosan (2.0–3.0% (w/v)) and cellulose nanofibers (0.2–0.4% (w/v)). CHI/CNF printed hydrogels with good mechanical performance (Young’s modulus 3.0 MPa, stress at break 1.5 MPa, and strain at break 75%), anisotropic microstructure and suitable biological response, were achieved. The CHI/CNF composition and processing parameters were optimized in terms of 3D printability, resolution, and quality of the constructs (microstructure and mechanical properties), resulting in good cell viability. This work allows expanding the library of the so far used biopolymer compositions for 3D printing of mechanically performant hydrogel constructs, purely based in the natural polymers chitosan and cellulose, offering new perspectives in the engineering of mechanically demanding hydrogel tissues like intervertebral disc (IVD), cartilage, meniscus, among others.


2016 ◽  
Vol 77 (S 02) ◽  
Author(s):  
Hassan Othman ◽  
Sam Evans ◽  
Daniel Morris ◽  
Saty Bhatia ◽  
Caroline Hayhurst

2019 ◽  
Author(s):  
Avital Perry ◽  
Soliman Oushy ◽  
Lucas Carlstrom ◽  
Christopher Graffeo ◽  
David Daniels ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document