Influence of energy spectrum distribution on drop breakage in turbulent flows

2014 ◽  
Vol 117 ◽  
pp. 55-70 ◽  
Author(s):  
Luchang Han ◽  
Shenggao Gong ◽  
Yongqiang Li ◽  
Ningning Gao ◽  
Jin Fu ◽  
...  
AIChE Journal ◽  
2021 ◽  
Author(s):  
Ioannis Bagkeris ◽  
Vipin Michael ◽  
Robert Prosser ◽  
Adam Kowalski

Author(s):  
Xiaohua Wang ◽  
Siva Thangam

An anisotropic two-equation Reynolds-stress model is developed by modeling the energy spectrum and through invariance based scaling. In this approach the effect of rotation is used to modify the energy spectrum, while the influence of swirl is modeled based on scaling laws. The resulting generalized model is validated for benchmark turbulent flows with swirl and curvature.


2009 ◽  
Vol 23 (03) ◽  
pp. 513-516 ◽  
Author(s):  
HAO ZHU ◽  
KEMING CHENG

In this article, we investigate the energy cascade of three-dimensional turbulent flows, in which the break-up process of eddy is quasi-self-similar. Mathematically this kind of turbulence with quasi-self-similar structure eddies can be regarded as cookie-cutter system, and can be generated by self-similar iterated function system (IFS) with added nonlinear disturbance. Using Bowen's result, we can calculate the exponent of dissipative correlated function, dissipated velocity, energy spectrum supported on cookie-cutter system. The present results show that the β-model is feasible for this kind of quasi-self-similar turbulence.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4495
Author(s):  
Paweł Ligęza

Due to their common occurrence and fundamental role in human-realized processes and natural phenomena, turbulent flows are subject to constant research. One of the research tools used in these studies are hot-wire anemometers. These instruments allow for measurements in turbulent flows in a wide range of both velocities and frequencies of fluctuations. This article describes a new indirect method of determining the bandwidth shape of a constant-temperature anemometer. The knowledge of this bandwidth is an important factor in the study of the energy spectrum of turbulent flows.


2006 ◽  
Vol 13 (1) ◽  
pp. 83-98 ◽  
Author(s):  
B. Galperin ◽  
S. Sukoriansky ◽  
N. Dikovskaya ◽  
P. L. Read ◽  
Y. H. Yamazaki ◽  
...  

Abstract. Numerical studies of small-scale forced, two-dimensional turbulent flows on the surface of a rotating sphere have revealed strong large-scale anisotropization that culminates in the emergence of quasi-steady sets of alternating zonal jets, or zonation. The kinetic energy spectrum of such flows also becomes strongly anisotropic. For the zonal modes, a steep spectral distribution, E(n)=CZ (Ω/R)2 n-5, is established, where CZ=O(1) is a non-dimensional coefficient, Ω is the angular velocity, and R is the radius of the sphere, respectively. For other, non-zonal modes, the classical, Kolmogorov-Batchelor-Kraichnan, spectral law is preserved. This flow regime, referred to as a zonostrophic regime, appears to have wide applicability to large-scale planetary and terrestrial circulations as long as those are characterized by strong rotation, vertically stable stratification and small Burger numbers. The well-known manifestations of this regime are the banded disks of the outer planets of our Solar System. Relatively less known examples are systems of narrow, subsurface, alternating zonal jets throughout all major oceans discovered in state-of-the-art, eddy-permitting simulations of the general oceanic circulation. Furthermore, laboratory experiments recently conducted using the Coriolis turntable have basically confirmed that the lateral gradient of ''planetary vorticity'' (emulated via the topographic β-effect) is the primary cause of the zonation and that the latter is entwined with the development of the strongly anisotropic kinetic energy spectrum that tends to attain the same zonal and non-zonal distributions, −5 and , respectively, in both the slope and the magnitude, as the corresponding spectra in other environmental conditions. The non-dimensional coefficient CZ in the −5 spectral law appears to be invariant, , in a variety of simulated and natural flows. This paper provides a brief review of the zonostrophic regime. The review includes the discussion of the physical nature, basic mechanisms, scaling laws and universality of this regime. A parameter range conducive to its establishment is identified, and collation of laboratory and naturally occurring flows is presented through which the zonostrophic regime manifests itself in the real world.


2019 ◽  
Vol 875 ◽  
pp. 914-928 ◽  
Author(s):  
Andreas Freund ◽  
Antonino Ferrante

The spectrum of turbulence kinetic energy for homogeneous turbulence is generally computed using the Fourier transform of the velocity field from physical three-dimensional space to wavenumber $k$. This analysis works well for single-phase homogeneous turbulent flows. In the case of multiphase turbulent flows, instead, the velocity field is non-smooth at the interface between the carrier fluid and the dispersed phase; thus, the energy spectra computed via Fourier transform exhibit spurious oscillations at high wavenumbers. An alternative definition of the spectrum uses the wavelet transform, which can handle discontinuities locally without affecting the entire spectrum while additionally preserving spatial information about the field. In this work, we propose using the wavelet energy spectrum to study multiphase turbulent flows. Also, we propose a new decomposition of the wavelet energy spectrum into three contributions corresponding to the carrier phase, droplets and interaction between the two. Lastly, we apply the new wavelet-decomposition tools in analysing the direct numerical simulation data of droplet-laden decaying isotropic turbulence (in absence of gravity) of Dodd & Ferrante (J. Fluid Mech., vol. 806, 2016, pp. 356–412). Our results show that, in comparison to the spectrum of the single-phase case, the droplets (i) do not affect the carrier-phase energy spectrum at high wavenumbers ($k_{m}/k_{min}\geqslant 128$), (ii) increase the energy spectrum at high wavenumbers ($k_{m}/k_{min}\geqslant 256$) by increasing the interaction energy spectrum at these wavenumbers and (iii) decrease the energy at low wavenumbers ($k_{m}/k_{min}\leqslant 16$) by increasing the dissipation rate at these wavenumbers.


2014 ◽  
Vol 758 ◽  
pp. 374-406 ◽  
Author(s):  
Corentin Herbert ◽  
Annick Pouquet ◽  
Raffaele Marino

AbstractMost turbulent flows appearing in nature (e.g. geophysical and astrophysical flows) are subjected to strong rotation and stratification. These effects break the symmetries of classical, homogenous isotropic turbulence. In doing so, they introduce a natural decomposition of phase space in terms of wave modes and potential vorticity modes. The appearance of a new time scale, associated with the propagation of waves, hinders the understanding of energy transfers across scales. For instance, it is difficult to predict a priori whether the energy cascades downscale as in homogeneous isotropic turbulence or upscale as expected from balanced dynamics. In this paper, we suggest a theoretical approach based on equilibrium statistical mechanics for the ideal system, inspired by the restricted partition function formalism introduced in metastability studies. We focus on the qualitative features of the inviscid system, taking into account either all the modes or just the slow modes. Specifically, we show that at absolute equilibrium, i.e. when all the modes are considered, no negative temperature states exist, and the isotropic energy spectrum is close to equipartition. By contrast, when the statistics is restricted to the contributions of the slow modes, we find that in the presence of rotation, there exists a regime of negative temperature featuring an infrared divergence in both the isotropic and the axisymmetric average energy spectrum, characteristic of an inverse cascade regime. Such regimes are not allowed for purely stratified flows, even in the restricted ensemble, because the slow manifold then partitions into modes that carry potential vorticity on the one hand, and hydrostatically balanced but vorticity-free modes, the so-called vertical shear horizontal flows, on the other hand, which forbid the appearance of negative temperatures.


2005 ◽  
Vol 73 (3) ◽  
pp. 397-404 ◽  
Author(s):  
Xiaohua Wang ◽  
Siva Thangam

An anisotropic two-equation model is developed through a novel technique that involves the representation of the energy spectrum and invariance based scaling. In this approach the effect of rotation is used to modify the energy spectrum, while the influence of swirl is modeled based on scaling laws. The resulting generalized two-equation turbulence model is validated for several benchmark turbulent flows with swirl and curvature.


2017 ◽  
Vol 38 (1) ◽  
pp. 79-96 ◽  
Author(s):  
Jerzy Bałdyga ◽  
Magdalena Jasińska

Abstract In this work a concept of energetic efficiency of mixing is presented and discussed; a classical definition of mixing efficiency is modified to include effects of the Schmidt number and the Reynolds number. Generalization to turbulent flows is presented as well. It is shown how the energetic efficiency of mixing as well as efficiencies of drop breakage and mass transfer in twophase liquid-liquid systems can be identified using mathematical models and test chemical reactions. New expressions for analyzing efficiency problem are applied to identify the energetic efficiency of mixing in a stirred tank, a rotor stator mixer and a microreactor. Published experimental data and new results obtained using new systems of test reactions are applied. It has been shown that the efficiency of mixing is small in popular types of reactors and mixers and thus there is some space for improvement.


Fluids ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 26 ◽  
Author(s):  
Shady E. Ahmed ◽  
Omer San

Turbulence modeling has been always a challenge, given the degree of underlying spatial and temporal complexity. In this paper, we propose the use of a partitioned reduced order modeling (ROM) approach for efficient and effective approximation of turbulent flows. A piecewise linear subspace is tailored to capture the fine flow details in addition to the larger scales. We test the partitioned ROM for a decaying two-dimensional (2D) turbulent flow, known as 2D Kraichnan turbulence. The flow is initiated using an array of random vortices, corresponding to an arbitrary energy spectrum. We show that partitioning produces more accurate and stable results than standard ROM based on a global application of modal decomposition techniques. We also demonstrate the predictive capability of partitioned ROM through an energy spectrum analysis, where the recovered energy spectrum significantly converges to the full order model’s statistics with increased partitioning. Although the proposed approach incurs increased memory requirements to store the local basis functions for each partition, we emphasize that it permits the construction of more compact ROMs (i.e., of smaller dimension) with comparable accuracy, which in turn significantly reduces the online computational burden. Therefore, we consider that partitioning acts as a converter which reduces the cost of online deployment at the expense of offline and memory costs. Finally, we investigate the application of closure modeling to account for the effects of modal truncation on ROM dynamics. We illustrate that closure techniques can help to stabilize the results in the inertial range, but over-stabilization might take place in the dissipative range.


Sign in / Sign up

Export Citation Format

Share Document