scholarly journals Revealing Complex Traits with Small Molecules and Naturally Recombinant Yeast Strains

2006 ◽  
Vol 13 (3) ◽  
pp. 319-327 ◽  
Author(s):  
Ethan O. Perlstein ◽  
Douglas M. Ruderfer ◽  
Gopal Ramachandran ◽  
Stephen J. Haggarty ◽  
Leonid Kruglyak ◽  
...  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hyunjun Ko ◽  
Jung-Hoon Bae ◽  
Bong Hyun Sung ◽  
Mi-Jin Kim ◽  
Soon-Ho Park ◽  
...  

Abstract A functional sweetener, difructose anhydride IV (DFA IV), is enzymatically produced from sucrose via levan by levansucrase (LSRase) followed by levan fructotransferase (LFTase). Here, we have demonstrated a consolidated production system for the direct conversion of DFA IV from sucrose using the co-culture of two recombinant yeast strains secreting LSRase from Bacillus subtilis and LFTase from Arthrobacter ureafaciens, respectively. To ensure secretory production of the enzymes, target protein-specific translational fusion partners (TFP) were employed, and the selected strains produced 3.8 U/mL of LSRase and 16.0 U/mL LFTase activity into the fermentation broth. To optimise the direct production, sucrose concentration and cell ratios were investigated. In the optimised conditions, 64.3 g/L crude DFA IV was directly produced from 244.7 g/L sucrose using co-fermentation of recombinant yeasts. These results promise an efficient production titre, yield, and DFA IV productivity in an industrially applicable method.


2013 ◽  
Vol 13 (1) ◽  
pp. 68 ◽  
Author(s):  
Agata Maciejak ◽  
Agata Leszczynska ◽  
Ilona Warchol ◽  
Monika Gora ◽  
Joanna Kaminska ◽  
...  

2017 ◽  
Author(s):  
Elizabeth R. Jerison ◽  
Sergey Kryazhimskiy ◽  
James Mitchell ◽  
Joshua S. Bloom ◽  
Leonid Kruglyak ◽  
...  

AbstractEvolution can favor organisms that are more adaptable, provided that genetic variation in adaptability exists. Here, we quantify this variation among 230 offspring of a cross between diverged yeast strains. We measure the adaptability of each offspring genotype, defined as its average rate of adaptation in a specific environmental condition, and analyze the heritability, predictability, and genetic basis of this trait. We find that initial genotype strongly affects adaptability and can alter the genetic basis of future evolution. Initial genotype also affects the pleiotropic consequences of adaptation for fitness in a different environment. This genetic variation in adaptability and pleiotropy is largely determined by initial fitness, according to a rule of declining adaptability with increasing initial fitness, but several individual QTLs also have a significant idiosyncratic role. Our results demonstrate that both adaptability and pleiotropy are complex traits, with extensive heritable differences arising from naturally occurring variation.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Elizabeth R Jerison ◽  
Sergey Kryazhimskiy ◽  
James Kameron Mitchell ◽  
Joshua S Bloom ◽  
Leonid Kruglyak ◽  
...  

Evolution can favor organisms that are more adaptable, provided that genetic variation in adaptability exists. Here, we quantify this variation among 230 offspring of a cross between diverged yeast strains. We measure the adaptability of each offspring genotype, defined as its average rate of adaptation in a specific environmental condition, and analyze the heritability, predictability, and genetic basis of this trait. We find that initial genotype strongly affects adaptability and can alter the genetic basis of future evolution. Initial genotype also affects the pleiotropic consequences of adaptation for fitness in a different environment. This genetic variation in adaptability and pleiotropy is largely determined by initial fitness, according to a rule of declining adaptability with increasing initial fitness, but several individual QTLs also have a significant idiosyncratic role. Our results demonstrate that both adaptability and pleiotropy are complex traits, with extensive heritable differences arising from naturally occurring variation.


2011 ◽  
Vol 396-398 ◽  
pp. 1531-1535
Author(s):  
Yan Zhang ◽  
Dong Guang Xiao ◽  
Cui Ying Zhang ◽  
Xi Sun ◽  
Ming Yue Wu

Mig1p, a zinc finger class of DNA-binding protein, plays a critical role in glucose repression for maltose utilization in Baker’s yeast. Maltose is the hydrolyzate of starch, which is the main component of dough. In this study, the recombinant yeast strains with MIG1 gene deletion were constructed, and the maltose metabolism of the parental and mutant strains in batch cultivations were investigated. Our results show that the degree of glucose repression of mutants △MIG1α and △MIG1a are reduced by 49.88% and 41.59% respectively compared to their parental strains, suggesting that MIG1 deletion can partially relieve glucose repression of maltose metabolism.


2008 ◽  
Vol 52 (11) ◽  
pp. 4057-4063 ◽  
Author(s):  
Roland Wakieć ◽  
Iwona Gabriel ◽  
Rajendra Prasad ◽  
Jeffrey M. Becker ◽  
John W. Payne ◽  
...  

ABSTRACT The susceptibility to several oligopeptide and amino acid antifungals of a Saccharomyces cerevisiae strain carrying multiple deletions in yeast multidrug resistance genes was compared to transformants containing the CDR1, CDR2, or MDR1 genes that encode the major Candida albicans drug efflux pumps. Recombinant yeast strains overexpressing Cdr1p and Cdr2p showed enhanced susceptibilities to all tested oligopeptide antifungals. The enhanced susceptibilities of multidrug-resistant yeast strains to oligopeptide antifungals corresponded to higher rates of oligopeptide uptake. Yeast cells overexpressing Cdr1p or Cdr2p effluxed protons at higher rates than the reference cells lacking these ABC transporters. An increased plasma membrane electrochemical gradient caused by the functional overexpression of Cdr1p or Cdr2p appeared to increase cellular susceptibility to oligopeptide antifungals by stimulating their uptake via oligopeptide permeases.


2004 ◽  
Vol 70 (10) ◽  
pp. 6086-6091 ◽  
Author(s):  
Michael Sauer ◽  
Paola Branduardi ◽  
Minoska Valli ◽  
Danilo Porro

ABSTRACT Yeasts do not possess an endogenous biochemical pathway for the synthesis of vitamin C. However, incubated with l-galactose, l-galactono-1,4-lactone, or l-gulono-1,4-lactone intermediates from the plant or animal pathway leading to l-ascorbic acid, Saccharomyces cerevisiae and Zygosaccharomyces bailii cells accumulate the vitamin intracellularly. Overexpression of the S. cerevisiae enzymes d-arabinose dehydrogenase and d-arabinono-1,4-lactone oxidase enhances this ability significantly. In fact, the respective recombinant yeast strains even gain the capability to accumulate the vitamin in the culture medium. An even better result is obtainable by expression of the plant enzyme l-galactose dehydrogenase from Arabidopsis thaliana. Budding yeast cells overexpressing the endogenous d-arabinono-1,4-lactone oxidase as well as l-galactose dehydrogenase are capable of producing about 100 mg of l-ascorbic acid liter−1, converting 40% (wt/vol) of the starting compound l-galactose.


Author(s):  
Ji-da Dai ◽  
M. Joseph Costello ◽  
Lawrence I. Gilbert

Insect molting and metamorphosis are elicited by a class of polyhydroxylated steroids, ecdysteroids, that originate in the prothoracic glands (PGs). Prothoracicotropic hormone stimulation of steroidogenesis by the PGs at the cellular level involves both calcium and cAMP. Cell-to-cell communication mediated by gap junctions may play a key role in regulating signal transduction by controlling the transmission of small molecules and ions between adjacent cells. This is the first report of gap junctions in the PGs, the evidence obtained by means of SEM, thin sections and freeze-fracture replicas.


Author(s):  
H.B. Pollard ◽  
C.E. Creutz ◽  
C.J. Pazoles ◽  
J.H. Scott

Exocytosis is a general concept describing secretion of enzymes, hormones and transmitters that are otherwise sequestered in intracellular granules. Chemical evidence for this concept was first gathered from studies on chromaffin cells in perfused adrenal glands, in which it was found that granule contents, including both large protein and small molecules such as adrenaline and ATP, were released together while the granule membrane was retained in the cell. A number of exhaustive reviews of this early work have been published and are summarized in Reference 1. The critical experiments demonstrating the importance of extracellular calcium for exocytosis per se were also first performed in this system (2,3), further indicating the substantial service given by chromaffin cells to those interested in secretory phenomena over the years.


Sign in / Sign up

Export Citation Format

Share Document