scholarly journals Ecohydrologic processes and soil thickness feedbacks control limestone-weathering rates in a karst landscape

2019 ◽  
Vol 527 ◽  
pp. 118774 ◽  
Author(s):  
Xiaoli Dong ◽  
Matthew J. Cohen ◽  
Jonathan B. Martin ◽  
Daniel L. McLaughlin ◽  
A. Brad Murray ◽  
...  
Geology ◽  
2014 ◽  
Vol 42 (9) ◽  
pp. 751-754 ◽  
Author(s):  
Simon Emmanuel ◽  
Yael Levenson

2010 ◽  
Vol 161 (12) ◽  
pp. 517-523
Author(s):  
Reto Giulio Meuli ◽  
Peter Schwab

The national soil monitoring network (Nabo) consists of 105 sites across Switzerland, 28 of which are located in forests. After 25 years already seven forest sites (25%) were more or less damaged by storms. Two of them had to be abandoned for a decade to recover. Concerning precautionary soil protection the legal guide value is exceeded at three forest sites for cadmium and at one site also for chromium. These sites are all based on Jurassic limestone, and it is well known that residuals of limestone weathering can be rich in cadmium. Hence, the enrichment is supposed to be of geogenic origin. In the Canton Ticino the top soil at Novaggio site exceeds the guide value for lead. Here, anthropogenic origin is very likely. The analysis of the organic pollutants PAH and PCB in the third sampling campaign revealed moderate concentrations with a maximum lower than or equal to ⅔ of the corresponding guide value. Based on the results of the first four sampling campaigns it can be concluded that only small changes in the measured heavy metal concentrations in the top soils at the 28 Nabo sites were found. The most dynamic element is lead. Most of the concentrations are far below the guide values, the same holds for the organic pollutants PAH and PCB.


1989 ◽  
Vol 20 (2) ◽  
pp. 85-96 ◽  
Author(s):  
Gunnar Jacks ◽  
Göran Åberg ◽  
P. Joseph Hamilton

Strontium isotopes in precipitation, soil and runoff water can be used to establish a ratio of wet plus dry deposited Sr to Sr released by weathering. This ratio is especially enhanced in areas with old acid Proterozoic rocks (0.6-2.5 Ga) and Archean rocks (>2.5 Ga). Since Sr and Ca behave in an analogous way in the coniferous forest ecosystem the results for Sr can be used for the determination of Ca. If the deposition of calcium can be calculated reasonably accurately the weathering rate can also be estimated. Five catchments have been investigated using this approach. Three of them seem to be close to a steady state, wherein the losses and gains of calcium to the system are equal. In the two southern-most catchments there seems to be an ongoing loss of exchangeable calcium. The loss by runoff occurs with sulphate being the dominant anion. Weathering rates of 1.5 to 4.8 kg Ca/ha year have been estimated.


2017 ◽  
Author(s):  
Sarah G. Williams ◽  
◽  
Joshua M. Blackstock ◽  
Matthew D. Covington

2018 ◽  
Author(s):  
James B. Paces ◽  
◽  
Mark R. Hudson ◽  
Chuck Bitting ◽  
Adam M. Hudson ◽  
...  

2021 ◽  
Vol 13 (3) ◽  
pp. 441
Author(s):  
Han Fu ◽  
Bihong Fu ◽  
Pilong Shi

The South China Karst, a United Nations Educational, Scientific and Cultural Organization (UNESCO) natural heritage site, is one of the world’s most spectacular examples of humid tropical to subtropical karst landscapes. The Libo cone karst in the southern Guizhou Province is considered as the world reference site for these types of karst, forming a distinctive and beautiful landscape. Geomorphic information and spatial distribution of cone karst is essential for conservation and management for Libo heritage site. In this study, a deep learning (DL) method based on DeepLab V3+ network was proposed to document the cone karst landscape in Libo by multi-source data, including optical remote sensing images and digital elevation model (DEM) data. The training samples were generated by using Landsat remote sensing images and their combination with satellite derived DEM data. Each group of training dataset contains 898 samples. The input module of DeepLab V3+ network was improved to accept four-channel input data, i.e., combination of Landsat RGB images and DEM data. Our results suggest that the mean intersection over union (MIoU) using the four-channel data as training samples by a new DL-based pixel-level image segmentation approach is the highest, which can reach 95.5%. The proposed method can accomplish automatic extraction of cone karst landscape by self-learning of deep neural network, and therefore it can also provide a powerful and automatic tool for documenting other type of geological landscapes worldwide.


2021 ◽  
Vol 14 (4) ◽  
pp. 211-216
Author(s):  
Aaron Bufe ◽  
Niels Hovius ◽  
Robert Emberson ◽  
Jeremy K. C. Rugenstein ◽  
Albert Galy ◽  
...  

AbstractGlobal climate is thought to be modulated by the supply of minerals to Earth’s surface. Whereas silicate weathering removes carbon dioxide (CO2) from the atmosphere, weathering of accessory carbonate and sulfide minerals is a geologically relevant source of CO2. Although these weathering pathways commonly operate side by side, we lack quantitative constraints on their co-variation across erosion rate gradients. Here we use stream-water chemistry across an erosion rate gradient of three orders of magnitude in shales and sandstones of southern Taiwan, and find that sulfide and carbonate weathering rates rise with increasing erosion, while silicate weathering rates remain steady. As a result, on timescales shorter than marine sulfide compensation (approximately 106–107 years), weathering in rapidly eroding terrain leads to net CO2 emission rates that are at least twice as fast as CO2 sequestration rates in slow-eroding terrain. We propose that these weathering reactions are linked and that sulfuric acid generated from sulfide oxidation boosts carbonate solubility, whereas silicate weathering kinetics remain unaffected, possibly due to efficient buffering of the pH. We expect that these patterns are broadly applicable to many Cenozoic mountain ranges that expose marine metasediments.


2021 ◽  
Vol 11 (12) ◽  
pp. 5499
Author(s):  
Nihal D. Salman ◽  
György Pillinger ◽  
Muammel M. Hanon ◽  
Péter Kiss

The applicability of the typical pressure–sinkage models used to characterize the soil’s bearing properties is limited to homogeneous soils (infinite thickness) that have no hard layer. At a given depth, a hard layer can have a considerable impact on the soil’s load-bearing capacity. It is thus necessary to alter the pressure–sinkage equation by taking this condition into account when assessing the load-bearing capacity. The present paper aims to determine a simple, high-fidelity model, in terms of soil characterization, that can account for the hard layer affection. To assess hard layer affection in this paper, a plate sinkage test (bevameter) was conducted on sandy loam soil. To this end, the soil was prepared by considering three bulk densities and two soil thickness levels at 7–9% moisture content levels. According to the results, this paper put forth a new perspective and related equations for characterizing bearing performance. The sinkage modulus (k) is an intrinsic soil parameter that has a determined unit of N/cm2 and is significant for managing the bearing performance. The results showed that the new modulus sinkage model incorporates the main factor of the rigid layer effect involving high fidelity that the conventional models have failed to account for.


Sign in / Sign up

Export Citation Format

Share Document