scholarly journals Computer-aided design of polymeric materials: Computational study for characterization of databases for prediction of mechanical properties under polydispersity

2019 ◽  
Vol 191 ◽  
pp. 65-72 ◽  
Author(s):  
Fiorella Cravero ◽  
Santiago A. Schustik ◽  
María Jimena Martínez ◽  
Carlos D. Barranco ◽  
Mónica F. Díaz ◽  
...  
Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2252 ◽  
Author(s):  
Yin ◽  
Jang ◽  
Lee ◽  
Bae

This study compares the mechanical properties and wear ability of five CAD/CAM (computer-aided design/computer-aided manufacturing) millable dental blocks. All the discs, including Amber Mill Hybrid, Vita Enamic, Katana Avencia, Lava Ultimate, and Amber Mill, were cut in dimensions of 1.2 mm in thickness and 12 mm in diameter, polished to a machined surface, and immersed in distilled water for seven days. Vickers hardness was measured and the indentations were observed using microscope. The discs were brushed under a 150 g load. Mean surface roughness (Ra) and topography were determined after 100,000 cycles. Finally the biaxial flexure strength of the discs was measured and the broken surfaces were observed using scanning electron microscopy (SEM). The data was subjected to Weibull analysis. All data were analyzed by one-way analysis (ANOVA). The results of Vickers hardness are shown as: Amber Mill > Vita Enamic > Amber Mill Hybrid > Lava Ultimate > Katana Avencia. Katana Avencia showed the highest volume percentage reduction and the roughest surface after toothbrushing. The biaxial flexural strength is shown as: Amber Mill > Katana Avencia > Lava Ultimate > Amber Mill Hybrid > Vita Enamic. All the tested materials exhibited varying degrees of mass loss and surface roughness. The properties of the composite materials are related to the filler content, filler volume, and polymerization methods.


Author(s):  
M. J. Rupérez ◽  
J. D. Martín ◽  
C. Monserrat ◽  
M. Alcañiz

Recently, important advances in virtual reality have made possible real improvements in computer aided design, CAD. These advances are being applied to all the fields and they have reached to the footwear design. The majority of the interaction foot-shoe simulation processes have been focused on the interaction between the foot and the sole. However, few efforts have been made in order to simulate the interaction between the shoe upper and the foot surface. To simulate this interaction, flexibility tests (characterization of the relationship between exerted force and displacement) are carried out to evaluate the materials used for the shoe upper. This chapter shows a procedure based on artificial neural networks (ANNs) to reduce the number of flexibility tests that are needed for a comfortable shoe design. Using the elastic parameters of the material as inputs to the ANN, it is possible to find a neural model that provides a unique equation for the relationship between force and displacement instead of a different characteristic curve for each material. Achieved results show the suitability of the proposed approach.


2008 ◽  
Vol 1066 ◽  
Author(s):  
Valeri V. Kalinin ◽  
Alexandre M. Myasnikov ◽  
Vladislav E. Zyryanov

ABSTRACTIn our previous publications [1, 2 and 3], spreading resistance probe (SRP) measurements for quality control of metal induced lateral crystallization (MILC) of amorphous silicon (a-Si) were studied, and the mechanism of nickel diffusion was simulated using technology computer-aided design (TCAD) modeling.Now, we continue to present the explanation of experimental results by modeling with the Synopsys TCAD package, whereby models for resistivity vs. grain size in implanted recrystallized silicon layers are implemented and compared with experiments.Findings show that the SRP method can be used for the characterization of the MILC process of amorphous silicon and that a comparison of experimental and calculated data allows both a turn from qualitative to quantitative analysis of recrystallized silicon film and an estimate of grain size. It has been found that grain size depends on location in the MILC region and on the time and temperature of recrystallization.


2019 ◽  
Vol 13 (4) ◽  
pp. 804
Author(s):  
Hasanain Abdulhameed Odha ◽  
Mohammed Ridha A. Alhaideri ◽  
Radhwan M. Hussein ◽  
Hasanain Abdulameer Al-Rahmany ◽  
Sinan Forat Hussein ◽  
...  

2019 ◽  
Vol 40 (6) ◽  
pp. 501-510 ◽  
Author(s):  
S. V. Panin ◽  
S. A. Bochkareva ◽  
D. G. Buslovich ◽  
L. A. Kornienko ◽  
B. A. Lyukshin ◽  
...  

Author(s):  
Ana Emanuela Cisne de LIMA ◽  
Hilmo Barreto Leite FALCÃO FILHO ◽  
Helena de Freitas Oliveira PARANHOS

ABSTRACT Computer aided design / computer aided manufacturing (CAD/CAM) systems are among the most technological advanced techniques in oral rehab today. Compared with conventional techniques, they can optimize the resistance and the adaptation of dental ceramics. Thus, their indications of use have been widened, making the technique more and more well-known and widespread. Therefore, the aim of this study is to present a literature review on comparative studies of the mechanical properties of ceramic systems produced by CAD / CAM. A search for scientific articles published between 2009 and 2019, in English, Spanish or Portuguese, was performed through the databases SCIELO, BIREME and PUBMED, using the descriptors “Ceramics”, “Computer Aided Design” and “ Partial Fixed Prosthesis “. Currently, all ceramic systems appear to have adequate strength for simple rehabilitations, but ceramic restorations produced by CAD/CAM systems present greater reliability than other manufacturing methods, presenting a wider array of indications due to their higher mechanical resistance. These systems, besides their versatility, also present an excellent aesthetic result, guaranteeing appropriate optical properties such as translucency and fluorescence, similar to natural teeth. Although the cost is a limiting factor, CAD/CAM technology is in full development and with high success rates that qualifies it as the state of art in oral rehabilitation.


Sign in / Sign up

Export Citation Format

Share Document