Cost-effective in-situ remediation technologies for complete mineralization of dyes contaminated soils

Chemosphere ◽  
2020 ◽  
Vol 243 ◽  
pp. 125253
Author(s):  
Vipul R. Patel ◽  
Razia Khan ◽  
Nikhil Bhatt
1998 ◽  
Vol 35 (6) ◽  
pp. 938-960 ◽  
Author(s):  
Robert K Niven ◽  
Nasser Khalili

A new in situ remediation method is described, "upflow washing," in which contaminants are flushed to the surface within an in situ fluidized zone produced by a jet inserted into a granular formation. The suitability of the method for LNAPL (light non-aqueous phase liquid) remediation is examined by experiments on diesel-contaminated soils within column and tank settings. The experiments indicate significant reductions in diesel levels (96-99.9%) may be achieved by fluidization with water and gas (gas-liquid upflow washing, GLUW) for a wide range of initial diesel concentrations (10 000 to 150 000 mg/kg) and for soil fines contents of 0 to at least 10%. Final diesel levels of <1000 mg/kg in a uniform fine sand and <200 mg/kg in clayey sands can be achieved. The efficiency is much higher than that of fixed bed flushing (simulated pump-and-treat), as the method overcomes the trapping of NAPL ganglia. Fludization with water alone (liquid upflow washing, LUW) is less effective than fixed bed flushing in the uniform sand, but approaches that of GLUW in clayey and silty sands. The results are explained by theoretical analysis of the removability of isolated NAPL droplets and mixed solid - NAPL particles from a fluidized bed due to buoyancy and elutriation, which may be represented using a "removability regime map" for the diesel-water-sand system.Key words: fluidization, in situ, remediation, NAPL, diesel.


Minerals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 342 ◽  
Author(s):  
Magdalena Andrunik ◽  
Magdalena Wołowiec ◽  
Daniel Wojnarski ◽  
Sylwia Zelek-Pogudz ◽  
Tomasz Bajda

Heavy metal contamination in soils has become one of the most critical environmental issues. The most efficient in-situ remediation technique is chemical immobilization that uses cost-effective soil amendments such as phosphate compounds to decrease Pb, Cd and Zn accessibility in the contaminated soils. The present study examined the effectiveness of KH2PO4 in immobilizing Pb, Cd and Zn in three samples of contaminated soils collected from ZGH “Bolesław” (Mining and Smelting Plant “Bolesław”). Effectiveness was evaluated using the following methods: a toxicity characteristic leaching procedure (TCLP)-based experiment, sequential extraction, X-ray diffraction analyses (XRD), and scanning electron microscopy–energy dispersive spectroscopy (SEM–EDS). The most efficient percentage reduction of total leachable metal concentration assessed by TCLP was observed for lead (50%–80%), and the least reduction was observed for zinc (1%–17%). The most effective immobilization of stable compounds assessed by sequential extraction was noted for lead, while the weakest immobilization was noted for cadmium. New insoluble mineral phases were identified by SEM-EDS analysis. Cd, Zn, and Pb formed new stable mineral substances with phosphates. The predominant crystal forms were dripstones and groups of needles, which were easily formed by dissolved carbon rock surfaces containing zinc ions. The alkaline nature of the soil and a large number of carbonates mainly influenced the formation of new structures.


ael ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 180069 ◽  
Author(s):  
Aaron W. Green ◽  
Thomas M. DeSutter ◽  
Aaron L. M. Daigh ◽  
Miranda A. Meehan

2004 ◽  
Vol 23 (1) ◽  
pp. 78-93 ◽  
Author(s):  
Ganga M. Hettiarachchi ◽  
Gary M. Pierzynski

2021 ◽  
Vol 2 (4) ◽  
pp. 53-58
Author(s):  
Hasnain Raza ◽  

As anthropogenic activities rise over the world, representing an environmental threat, soil contamination and treatment of polluted areas have become a worldwide concern. Bioremediation is a sustainable technique that could be a cost-effective mitigating solution for heavy metal-polluted soil regeneration. Due to the difficulties in determining the optimum bioremediation methodology for each type of pollutant and the lack of literature on soil bioremediation, we reviewed the main in-situ type, their current properties, applications, and techniques, plants, and microbe’s efficiency for treatment of contaminated soil. In this review, we describe the deeper knowledge of the in-situ types of bioremediation and their different pollutant accumulation mechanisms.


2019 ◽  
Vol 112 ◽  
pp. 03024 ◽  
Author(s):  
Nicolae Cioica ◽  
Cătălina Tudora ◽  
Dorin Iuga ◽  
György Deak ◽  
Monica Matei ◽  
...  

Heavy metals are among the most common types of contaminants in agricultural soils, especially those bordering the cities, due to the uncontrolled use of sewage sludge, compost, mining waste and chemical fertilizers. Excessive accumulation of heavy metals, which do not degrade over time, adversely affects crop yields by decreasing microbial activity and fertility of contaminated soils. Also, excess of heavy metals in the soil poses a serious threat to plant and animal health and, through their entry into the food chain, to human health. For this reason, the decontamination of soils contaminated with heavy metals has become a necessity. This review presents the current state of phytoremediation research as the most cost-effective method of in-situ environmental decontamination of soils contaminated with heavy metals.


2013 ◽  
Vol 1 (1) ◽  
pp. 21-28
Author(s):  
Basel Natsheh ◽  
Nawaf Abu-Khalaf ◽  
Tahseen Sayara ◽  
Saed Khayat ◽  
Mazen Salman

Plant-assisted bioremediation (phytoremediation) is a promising technique for in-situ remediation of contaminated soils. Enhancement of phytoremediation processes requires a sound understanding of the complex interactions in the rhizosphere. This work presents a Pot experiment was conducted under green house conditions to test the effect of fungal inoculation on remediating heavy metal (HM) contaminated soil treated with sewage effluent for several years. Canola crop was used as accumulator plants. Results demonstrated that the dry matter yield of tested crops were significantly higher in soil irrigated for 50 years with sewage effluent than that in 20 years sewage effluent irrigated soil. Metal uptake and accumulation in different plant parts (shoot and root) was enhanced after inoculation with Aspergillus parasiticus (F1) and Fusarium oxysporum (F2). The reate of HM accumulation as higher in in soil treated irrigated sewage effluent for 50 years than that in 20 years sewage irrigated soil.


Sign in / Sign up

Export Citation Format

Share Document