Spatial methods to analyze the relationship between Spanish soil properties and cadmium content

Chemosphere ◽  
2021 ◽  
Vol 268 ◽  
pp. 129347
Author(s):  
Mohammad Sakizadeh ◽  
Jose Antonio Rodríguez Martín
2021 ◽  
Vol 13 (11) ◽  
pp. 6221
Author(s):  
Muyuan Ma ◽  
Yaojun Zhu ◽  
Yuanyun Wei ◽  
Nana Zhao

To predict the consequences of environmental change on the biodiversity of alpine wetlands, it is necessary to understand the relationship between soil properties and vegetation biodiversity. In this study, we investigated spatial patterns of aboveground vegetation biomass, cover, species diversity, and their relationships with soil properties in the alpine wetlands of the Gannan Tibetan Autonomous Prefecture of on the Qinghai-Tibetan Plateau, China. Furthermore, the relative contribution of soil properties to vegetation biomass, cover, and species diversity were compared using principal component analysis and multiple regression analysis. Generally, the relationship between plant biomass, coverage, diversity, and soil nutrients was linear or unimodal. Soil pH, bulk density and organic carbon were also significantly correlated to plant diversity. The soil attributes differed in their relative contribution to changes in plant productivity and diversity. pH had the highest contribution to vegetation biomass and species richness, while total nitrogen was the highest contributor to vegetation cover and nitrogen–phosphorus ratio (N:P) was the highest contributor to diversity. Both vegetation productivity and diversity were closely related to soil properties, and soil pH and the N:P ratio play particularly important roles in wetland vegetation biomass, cover, and diversity.


2015 ◽  
Vol 24 ◽  
pp. 1931-1938 ◽  
Author(s):  
Jian Liu ◽  
Xiaocui Chen ◽  
Renqing Wang ◽  
Qingqing Cao ◽  
Haijie Zhang ◽  
...  

Nematology ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 445-457 ◽  
Author(s):  
Arjun Upadhaya ◽  
Guiping Yan ◽  
Julie Pasche ◽  
Audrey Kalil

Summary Plant-parasitic nematodes restrict crop growth and cause yield loss in field pea (dry edible pea). A 4-year survey of commercial pea fields was conducted in North Dakota, one of the leading producers of field pea in the USA, to investigate nematode distribution, prevalence, abundance and association with soil properties. Beginning in 2014, a total of 243 soil samples were collected from 16 counties, and soil properties of 115 samples were analysed to determine the association of nematodes with soil factors (texture, organic matter, nutrients). The plant-parasitic nematode genera, Paratylenchus (absolute frequency = 58-100%; mean density = 470-1550 (200 g soil)−1; greatest density = 7114 (200 g soil)−1) and Tylenchorhynchus (30-80%; 61-261; 1980, respectively), were the most frequent and widely distributed. Pratylenchus and Helicotylenchus were identified in one-third of the counties surveyed with mean densities ranging from 43 to 224 and 36 to 206 (200 g soil)−1, respectively. Xiphinema was found relatively frequently but at low densities. Hoplolaimus and Paratrichodorus were rarely detected at lower densities. Canonical correspondence analysis revealed that soil factors explained 19% of the total variance of nematode genera abundance. The relationship between nematode abundance and soil sand content and pH was significant, while clay, silt, organic matter and nutrients were not significantly related to nematode abundance. This is the first multi-year study investigating nematodes associated with field peas and their relationship with soil factors in a major field pea production region of the USA.


Soil Research ◽  
1979 ◽  
Vol 17 (2) ◽  
pp. 227 ◽  
Author(s):  
LG Veitch ◽  
BA Stynes

Study of the relationship between soil properties and traditional soil classifications, using the canonical analysis procedure, showed that both a highly significant and a substantial relationship exists. Classification data on average accounts for about 35% of the total variation of the soil variable data, individual values ranging from about 8% for average log salinity to 74% for the -0.1 bar water content of the soil. The analysis showed that classification data in five soil groups could be substantially retained in two dimensions. The soil variables most involved in the first dimension were per cent clay and the -0.1 bar water content of the soil, and in the second dimension, the available water content of the subsoil (30-100 cm), average pH and average log salinity. These results should be useful in other studies where it is desired to incorporate soil information in a model designed to account for variation in one or more measures of interest.


1966 ◽  
Vol 46 (2) ◽  
pp. 155-160 ◽  
Author(s):  
G. R. Saini ◽  
A. A. MacLean ◽  
J. J. Doyle

The relationship of the mean weight diameter of water-stable aggregates to certain soil properties (clay, organic matter, free iron, free aluminum, and polysaccharide contents) and the relationship of the increase in aggregation caused by VAMA to the same properties of 24 New Brunswick soils were evaluated by correlation and regression analyses.Simple correlation coefficients relating aggregation to soil properties indicated that organic matter (r = 0.627), polysaccharides (r = 0.602), and aluminum (r = 0.679) were the most important factors. However, when the influence of each factor was separated by partial correlation, the coefficients were not significant. On the other hand, the combined effects of all factors as indicated by the multiple correlation coefficient (r = 0.743) was significant at the 1% level. The effect of the same soil properties on response to VAMA, as shown by increase in mean weight diameter, indicated that clay exerted the greatest influence. The relationship with other factors was nonsignificant.


Sign in / Sign up

Export Citation Format

Share Document