THE INFLUENCE OF SOME PHYSICAL AND CHEMICAL PROPERTIES ON SOIL AGGREGATION AND RESPONSE TO VAMA

1966 ◽  
Vol 46 (2) ◽  
pp. 155-160 ◽  
Author(s):  
G. R. Saini ◽  
A. A. MacLean ◽  
J. J. Doyle

The relationship of the mean weight diameter of water-stable aggregates to certain soil properties (clay, organic matter, free iron, free aluminum, and polysaccharide contents) and the relationship of the increase in aggregation caused by VAMA to the same properties of 24 New Brunswick soils were evaluated by correlation and regression analyses.Simple correlation coefficients relating aggregation to soil properties indicated that organic matter (r = 0.627), polysaccharides (r = 0.602), and aluminum (r = 0.679) were the most important factors. However, when the influence of each factor was separated by partial correlation, the coefficients were not significant. On the other hand, the combined effects of all factors as indicated by the multiple correlation coefficient (r = 0.743) was significant at the 1% level. The effect of the same soil properties on response to VAMA, as shown by increase in mean weight diameter, indicated that clay exerted the greatest influence. The relationship with other factors was nonsignificant.

Weed Science ◽  
1980 ◽  
Vol 28 (4) ◽  
pp. 429-432 ◽  
Author(s):  
T. E. Dutt ◽  
R. G. Harvey

Pronamide [3,5-dichloro-(N-1, 1-dimethyl-2-propynyl) benzamide] phytotoxicity was compared in 10 Wisconsin soils and the relationship of activity to soil physical and chemical properties appraised. Twelve soil properties were measured and correlated with pronamide I50(50% fresh weight inhibition) values using oats (Avena sativaL. ‘Portal’) as the indicator plant in bioassays conducted under greenhouse conditions. Organic matter was the soil variable most inversely correlated with pronamide phytotoxicity. Cation exchange capacity, field moisture capacity, and Mg content were also inversely correlated with pronamide phytotoxicity, but probably reflect changes in soil organic matter levels. Clay content did not significantly affect pronamide phytotoxicity.


Weed Science ◽  
1985 ◽  
Vol 33 (4) ◽  
pp. 564-568 ◽  
Author(s):  
Wondimagegnehu Mersie ◽  
Chester L. Foy

The phytotoxicity of chlorsulfuron {2-chloro-N-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl] benzenesulfonamide} was compared in six soils, and the relationship of activity to soil physical and chemical properties was evaluated. The influence of soil pH (4.2 to 7.8) on phytotoxicity and adsorption of chlorsulfuron incorporated into high-organic-matter soil was also studied. For the phytotoxicity studies, corn (Zea maysL. ‘Pioneer 3320’) was used as the bioassay plant. Organic matter was the soil variable most highly correlated with chlorsulfuron phytotoxicity. There was an inverse relationship between phytotoxicity and organic matter. No significant relationship between clay content and chlorsulfuron toxicity was observed. The adsorption of chlorsulfuron decreased with increasing soil pH while desorption was greater at alkaline pH. Phytotoxicity of chlorsulfuron increased with increasing soil pH and reached a maximum at pH 6.9.


2004 ◽  
Vol 44 (12) ◽  
pp. 1241 ◽  
Author(s):  
W. E. Cotching ◽  
L. A. Sparrow ◽  
K. Hawkins ◽  
B. E. McCorkell ◽  
W. Rowley

Selected soil properties and paddock management characteristics were measured for 121 potato and poppy crops in north and northwest Tasmania to see if variation in these characteristics explain variation in crop yield. The soil properties we selected were those that previous work found had changed the most as a result of cropping and, therefore, may be affecting yield on the particular soil type. The soil properties and management characteristics that were significantly correlated with crop yield varied with crop and soil type. None of the soil characters had correlation coefficients greater than 0.63, probably reflecting the capacity of individual farmers to overcome particular soil limitations through their management of tillage, nutrition, irrigation, weeds and pathogens. On ferrosols, a visual score of soil structure was significantly correlated with potato yield (r = 0.57) and exchangeable aluminium was significantly correlated with poppy yield (r = 0.63). Exchangeable calcium (r = 0.54) and penetration resistance (r = 0.38) correlated positively and topdressed nitrogen (r = –0.49) correlated negatively with poppy alkaloid assay, an important determinant of overall poppy yield. On dermosols, depth to 2000 kPa penetration resistance (r = 0.60) and fertiliser P (r = –0.67) were correlated with potato yield, structure score correlated with poppy yield (r = 0.59), and penetration resistance with poppy assay (r = 0.52). On sodosols, fertiliser K (r = –0.41 and r = 0.55) and N (r = –0.45 and 0.42) correlated negatively with poppy yield and positively with poppy assay. On clay loam soils such as dermosols and ferrosols, increased topsoil cloddiness appears to be having a deleterious effect on crop yield. Cloddiness is readily assessed on these soils using the structure scorecard, which could therefore become a practical diagnostic test for farmers and advisers.


1969 ◽  
Vol 52 (4) ◽  
pp. 269-280 ◽  
Author(s):  
L. C. Liu ◽  
H. Cibes Viadé

Thirteen soils representing a wide range of physical and chemical properties were used in this study. Four herbicides including Atrazine, Ametryne, Prometryne, and Diuron were applied at a concentration series from 0.5 to 32 p.p.m. to each soil, with the exception of Caño Tiburones soil. Kanota oat (Avena sativa L.) was chosen as an indicator plant. ED50  values were obtained for the various soil types. The result indicated that ED50  values varied greatly with different soil types. Simple, partial, and multiple correlations were made among ED50  values and different soil properties. It was found that the organic matter was the major soil property which contributed chiefly to the phytotoxicity of herbicides. A theoretical relationship between percent soil organic matter and p.p.m.w. of herbicides required for 50-percent fresh-weight reduction of oat was obtained for herbicide dosage-prediction purpose.


SOIL ◽  
2016 ◽  
Vol 2 (1) ◽  
pp. 63-70 ◽  
Author(s):  
Alemayehu Adugna ◽  
Assefa Abegaz

Abstract. Land use change can have negative or positive effects on soil quality. Our objective was to assess the effects of land uses changes on the dynamics of selected soil physical and chemical properties. Soil samples were collected from three adjacent soil plots under different land uses, namely forestland, grazing land, and cultivated land at 0–15 cm depth. Changes in soil properties on cultivated and grazing land were computed and compared to forestland, and ANOVA (analysis of variance) was used to test the significance of the changes. Sand and silt proportions, soil organic content, total nitrogen content, acidity, cation exchange capacity, and exchangeable Ca2+ content were higher in forestlands. Exchangeable Mg2+ was highest in grazing land, while clay, available phosphorous, and exchangeable K+ were highest in cultivated land. The percentage changes in sand, clay, soil organic matter, cation exchange capacity, and exchangeable Ca2+ and Mg2+ were higher in cultivated land than in grazing land and forestland. In terms of the relation between soil properties, soil organic matter, total nitrogen, cation exchange capacity, and exchangeable Ca2+ were strongly positively correlated with most of soil properties, while available phosphorous and silt have no significant relationship with any of the other considered soil properties. Clay has a negative correlation with all soil properties. Generally, cultivated land has the least concentration of soil physical and chemical properties except clay and available phosphorous, which suggests an increasing degradation rate in soils of cultivated land. So as to increase soil organic matter and other nutrients in the soil of cultivated land, the integrated implementation of land management through compost, cover crops, manures, minimum tillage, crop rotation, and liming to decrease soil acidity are suggested.


2021 ◽  
pp. 163-175
Author(s):  
V. I. Savich ◽  
V. V. Gukalov ◽  
A. E. Sorokin ◽  
M. D. Konakh

This paper assesses the relationship between the physico-chemical and agro-chemical properties of sod-podzolic soils in the Moscow region and ordinary heavy-loamy chernozems in the Krasnodar region within the catenas and down the soil profile. Soil properties changed significantly through seasonal dynamics. From the end of April to the middle of June in the soil solution of sod-podzolic soils, the value of Eh varied from 534 to 759 mv, the ratio of NO3/NH4 – from 0.2 to 15.4; the content of water-soluble manganese – from 4.0 to 10.1. At the same time, there was a delay in change of soil properties, as humidity and temperature varied. It is shown that in different intervals of soil properties between individual indicators of fertility, the effects of synergism and antagonism are manifested. The degree of mutual influence of soil properties depended on both the degree of soil fertilization and the degree of their cultivation. Information relationships were manifested not only between the soil properties, but also between the processes. Temporary excessive moistening of the soil led to acidification of the soil in the washing type of water mode, and to alkalinization in the non-washing type. It is proposed to account for the relationship of soil properties with humidity, temperature, pH, and Eh to adjust the components of farming systems.


2020 ◽  
pp. 8-27
Author(s):  
Godswill Azinwie Asongwe ◽  
Bernard P. K. Yerima ◽  
Aaron Suh Tening ◽  
Irene Bongsiysi Bame

Fluvisols in urban wetlands in Bamenda Municipality Cameroon play a vital role in vegetable production but they are under immense pressure. Seven representative soil profiles and 21 surface soil samples were morphologically and/or physico-chemically characterized to classify the soils, evaluate their agro-utilization constraints, and to provide adequate data for planning sustainable land management. The soil samples were analyzed using standard procedures. Critical levels established for tropical crops and vegetables were used to declare deficiency of soil nutrients. The coefficient of variation were used as an index of soil variability, while sources of soil variation and subsequent grouping into management units were identified using principal component analysis. The soils, classified as Humi-umbric fluvisols are developed from young alluvio-colluvial material of granitic origin. Like other physico-chemical properties, organic matter varied irregularly down the profile. Except of pH which was slightly (CV<15%) variable, most soil properties were moderately (CV=15-35%) to highly (CV>35%) variable. Some correlation coefficients between the soil parameters were highly significant (p<0.01) ranging - 0.95 to 0.99, but most of them have correlation values less than 0.5. Six principal components (PCs) grouping soils in management units explained 96.2% of the variations observed in the soil properties. The PCs were: base status, organic matter, weathering and moisture retention, acidity, dispersal and N-mineralization, and mineral neo-synthesis factors. We recommend that a detailed mapping of soil properties be carried out for the establishment of a soil fertility map; and individual soil management practices defined for identified units instead of a common management for all units in the municipality.


Author(s):  
Amita M Watkar ◽  

Soil, itself means Soul of Infinite Life. Soil is the naturally occurring unconsolidated or loose covering on the earth’s surface. Physical properties depend upon the amount, size, shape, arrangement, and mineral composition of soil particles. It also depends on the organic matter content and pore spaces. Chemical properties depend on the Inorganic and organic matter present in the soil. Soils are the essential components of the environment and foundation resources for nearly all types of land use, besides being the most important component of sustainable agriculture. Therefore, assessment of soil quality and its direction of change with time is an ideal and primary indicator of sustainable agricultural land management. Soil quality indicators refer to measurable soil attributes that influence the capacity of a soil to function, within the limits imposed by the ecosystem, to preserve biological productivity and environmental quality and promote plant, animal and human health. The present study is to assess these soil attributes such as physical and chemical properties season-wise.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 448
Author(s):  
Mahrous Awad ◽  
Zhongzhen Liu ◽  
Milan Skalicky ◽  
Eldessoky S. Dessoky ◽  
Marian Brestic ◽  
...  

Heavy metals (HMs) toxicity represents a global problem depending on the soil environment’s geochemical forms. Biochar addition safely reduces HMs mobile forms, thus, reducing their toxicity to plants. While several studies have shown that biochar could significantly stabilize HMs in contaminated soils, the study of the relationship of soil properties to potential mechanisms still needs further clarification; hence the importance of assessing a naturally contaminated soil amended, in this case with Paulownia biochar (PB) and Bamboo biochar (BB) to fractionate Pb, Cd, Zn, and Cu using short sequential fractionation plans. The relationship of soil pH and organic matter and its effect on the redistribution of these metals were estimated. The results indicated that the acid-soluble metals decreased while the fraction bound to organic matter increased compared to untreated pots. The increase in the organic matter metal-bound was mostly at the expense of the decrease in the acid extractable and Fe/Mn bound ones. The highest application of PB increased the organically bound fraction of Pb, Cd, Zn, and Cu (62, 61, 34, and 61%, respectively), while the BB increased them (61, 49, 42, and 22%, respectively) over the control. Meanwhile, Fe/Mn oxides bound represents the large portion associated with zinc and copper. Concerning soil organic matter (SOM) and soil pH, as potential tools to reduce the risk of the target metals, a significant positive correlation was observed with acid-soluble extractable metal, while a negative correlation was obtained with organic matter-bound metal. The principal component analysis (PCA) shows that the total variance represents 89.7% for the TCPL-extractable and HMs forms and their relation to pH and SOM, which confirms the positive effect of the pH and SOM under PB and BB treatments on reducing the risk of the studied metals. The mobility and bioavailability of these metals and their geochemical forms widely varied according to pH, soil organic matter, biochar types, and application rates. As an environmentally friendly and economical material, biochar emphasizes its importance as a tool that makes the soil more suitable for safe cultivation in the short term and its long-term sustainability. This study proves that it reduces the mobility of HMs, their environmental risks and contributes to food safety. It also confirms that performing more controlled experiments, such as a pot, is a disciplined and effective way to assess the suitability of different types of biochar as soil modifications to restore HMs contaminated soil via controlling the mobilization of these minerals.


Sign in / Sign up

Export Citation Format

Share Document