scholarly journals The Relationship between the Distribution of Invasive Plant Alternanthera philoxeroides and Soil Properties is Scale-Dependent

2015 ◽  
Vol 24 ◽  
pp. 1931-1938 ◽  
Author(s):  
Jian Liu ◽  
Xiaocui Chen ◽  
Renqing Wang ◽  
Qingqing Cao ◽  
Haijie Zhang ◽  
...  
2021 ◽  
Vol 13 (11) ◽  
pp. 6221
Author(s):  
Muyuan Ma ◽  
Yaojun Zhu ◽  
Yuanyun Wei ◽  
Nana Zhao

To predict the consequences of environmental change on the biodiversity of alpine wetlands, it is necessary to understand the relationship between soil properties and vegetation biodiversity. In this study, we investigated spatial patterns of aboveground vegetation biomass, cover, species diversity, and their relationships with soil properties in the alpine wetlands of the Gannan Tibetan Autonomous Prefecture of on the Qinghai-Tibetan Plateau, China. Furthermore, the relative contribution of soil properties to vegetation biomass, cover, and species diversity were compared using principal component analysis and multiple regression analysis. Generally, the relationship between plant biomass, coverage, diversity, and soil nutrients was linear or unimodal. Soil pH, bulk density and organic carbon were also significantly correlated to plant diversity. The soil attributes differed in their relative contribution to changes in plant productivity and diversity. pH had the highest contribution to vegetation biomass and species richness, while total nitrogen was the highest contributor to vegetation cover and nitrogen–phosphorus ratio (N:P) was the highest contributor to diversity. Both vegetation productivity and diversity were closely related to soil properties, and soil pH and the N:P ratio play particularly important roles in wetland vegetation biomass, cover, and diversity.


2013 ◽  
Vol 864-867 ◽  
pp. 239-242
Author(s):  
Wen Juan Ding ◽  
Hua Yong Zhang ◽  
Fang Juan Zhang

This study examined the effects of submergence and nitrogen concentration on biomass allocation and nutrients utilization of an invasive plant Alternanthera philoxeroides. In the experiment, A. philoxeroides was applied to two water level treatments (0 and 25cm above the surface) across with two nitrogen concentrations (0 and 10 mg/l N). The results showed that submergence decreased leaf fraction and increased stem fraction, but high N changed this situation. In submergence, high N increased leaf fraction but decreased stem fraction due to leaves survival and maintenance. Submergence decreased root fraction and the content of soluble sugar in stem. The results suggested that high N concentration could counteract the negative effects of submergence. Therefore, the risk of A. philoxeroides invasion might be enhanced by nitrogen pollution in fluctuating water bodies, and should be attention intensely.


Nematology ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 445-457 ◽  
Author(s):  
Arjun Upadhaya ◽  
Guiping Yan ◽  
Julie Pasche ◽  
Audrey Kalil

Summary Plant-parasitic nematodes restrict crop growth and cause yield loss in field pea (dry edible pea). A 4-year survey of commercial pea fields was conducted in North Dakota, one of the leading producers of field pea in the USA, to investigate nematode distribution, prevalence, abundance and association with soil properties. Beginning in 2014, a total of 243 soil samples were collected from 16 counties, and soil properties of 115 samples were analysed to determine the association of nematodes with soil factors (texture, organic matter, nutrients). The plant-parasitic nematode genera, Paratylenchus (absolute frequency = 58-100%; mean density = 470-1550 (200 g soil)−1; greatest density = 7114 (200 g soil)−1) and Tylenchorhynchus (30-80%; 61-261; 1980, respectively), were the most frequent and widely distributed. Pratylenchus and Helicotylenchus were identified in one-third of the counties surveyed with mean densities ranging from 43 to 224 and 36 to 206 (200 g soil)−1, respectively. Xiphinema was found relatively frequently but at low densities. Hoplolaimus and Paratrichodorus were rarely detected at lower densities. Canonical correspondence analysis revealed that soil factors explained 19% of the total variance of nematode genera abundance. The relationship between nematode abundance and soil sand content and pH was significant, while clay, silt, organic matter and nutrients were not significantly related to nematode abundance. This is the first multi-year study investigating nematodes associated with field peas and their relationship with soil factors in a major field pea production region of the USA.


2020 ◽  
Vol 113 (4) ◽  
pp. 1972-1981
Author(s):  
Dong Jia ◽  
Yan-Hong Liu ◽  
Bin Zhang ◽  
Zhou-Yu Ji ◽  
Yuan-Xin Wang ◽  
...  

Abstract Insects are ecotothermic organisms. Their development, survival, reproduction as well as distribution and abundance are affected by temperature. Heat shock protein (HSP) gene expression is closely associated with temperature variation and influences the adaptation of organisms to adverse environments. The beetle Agasicles hygrophila has successfully been used for biological control of the invasive plant alligator weed (Alternanthera philoxeroides). As A. hygrophila populations are substantially inhibited by high temperatures in the summer, increasing global temperatures may limit the efficacy of this control agent. We previously established that A. hygrophila eggs have low tolerance to heat and this factored into the decreased numbers of A. hygrophila beetles at temperatures of 37.5°C and above. Here, we identified 26 HSP genes in A. hygrophila and examined the relationship between the transcript levels of these genes and heat tolerance. The temperature at which the expression of these 21 HSP genes peaked (Tpeak) was 37.5°C, which is in line with the limit of the high temperatures that A. hygrophila eggs tolerate. Therefore, we speculate that the Tpeak of HSP gene expression in eggs indicates the upper limit of temperatures that A. hygrophila eggs tolerate. This study identifies HSP genes as potential robust biomarkers and emphasizes that determining species’ heat tolerance in their natural habitats remains an important consideration for biocontrol. HSP gene expression data provide information about a species’ heat tolerance and may be used to predict its geographical distribution.


Soil Research ◽  
1979 ◽  
Vol 17 (2) ◽  
pp. 227 ◽  
Author(s):  
LG Veitch ◽  
BA Stynes

Study of the relationship between soil properties and traditional soil classifications, using the canonical analysis procedure, showed that both a highly significant and a substantial relationship exists. Classification data on average accounts for about 35% of the total variation of the soil variable data, individual values ranging from about 8% for average log salinity to 74% for the -0.1 bar water content of the soil. The analysis showed that classification data in five soil groups could be substantially retained in two dimensions. The soil variables most involved in the first dimension were per cent clay and the -0.1 bar water content of the soil, and in the second dimension, the available water content of the subsoil (30-100 cm), average pH and average log salinity. These results should be useful in other studies where it is desired to incorporate soil information in a model designed to account for variation in one or more measures of interest.


Sign in / Sign up

Export Citation Format

Share Document