Fe2.5Co0.3Zn0.2O4/CuCr-LDH as a visible-light-responsive photocatalyst for the degradation of caffeine, bisphenol A, and simazine in pure water and real wastewater under photo-Fenton-like degradation process

Chemosphere ◽  
2021 ◽  
pp. 132920
Author(s):  
Arezou Fazli ◽  
Marcello Brigante ◽  
Alireza Khataee ◽  
Gilles Mailhot
2021 ◽  
Vol 32 (18) ◽  
pp. 23007-23017
Author(s):  
Qing Han ◽  
Shihua Zhou ◽  
Liuyang Xu ◽  
Xianke Sun ◽  
Kuili Liu ◽  
...  
Keyword(s):  

2011 ◽  
Vol 9 (3) ◽  
pp. 391-403 ◽  
Author(s):  
Mathias Eisenhut ◽  
Xinghua Guo ◽  
Astrid Paulitsch-Fuchs ◽  
Elmar Fuchs

AbstractThe formation of aqueous bridges containing phenol and ethylene glycol as well as bisphenol-A, hydrochinone and p-cresol under the application of high voltage DC (“liquid bridges”) is reported. Detailed studies were made for phenol and glycol with concentrations from 0.005 to 0.531 mol L−1. Conductivity as well as substance and mass transfers through these aqueous bridges are discussed and compared with pure water bridges. Previously suggested bidirectional mass transport is confirmed for the substances tested. Anodic oxidation happens more efficiently when phenol or glycol are transported from the cathode to the anode since in this case the formation of a passivation layer or electrode poisoning are retarded by the electrohydrodynamic (EHD) flow. The conductivity in the cathode beaker decreases in all experiments due to electrophoretic transport of naturally dissolved carbonate and bicarbonate to the anode. The observed electrochemical behavior is shortly discussed and compared to known mechanisms.


2018 ◽  
Vol 17 (5) ◽  
pp. 628-637 ◽  
Author(s):  
Haydar Ali ◽  
Nikhil R. Jana

A gold nanoparticle–graphene based composite has been developed for the degradation of bisphenol A under visible light and to detoxify contaminated water/food/environments.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Xiangchao Meng ◽  
Zisheng Zhang

In photocatalysis, the recombination of electron-hole pairs is generally regarded as one of its most serious drawbacks. The synthesis of various composites with heterojunction structures has increasingly shed light on preventing this recombination. In this work, a BiOBr-Bi2WO6photocatalytic heterojunction semiconductor was synthesized by the facile hydrothermal method and applied in the photocatalytic degradation process. It was determined that both reaction time and temperature significantly affected the crystal structure and morphologies of the photocatalysts. BiOBr (50 at%)-Bi2WO6composites were prepared under optimum synthesis conditions (120°C for 6 h) and by theoretically analyzing the DRS results, it was determined that they possessed the suitable band gap (2.61 eV) to be stimulated by visible-light irradiation. The photocatalytic activities of the as-prepared photocatalysts were evaluated by the degradation ofRhodamine B (RhB)under visible-light irradiation. The experimental conditions, including initial concentration, pH, and catalyst dosage, were explored and the photocatalysts in this system were proven stable enough to be reused for several runs. Moreover, the interpreted mechanism of the heterojunction enhancement effect proved that the synthesis of a heterojunction structure provided an effective method to decrease the recombination rate of the electron-hole pairs, thereby improving the photocatalytic activity.


2016 ◽  
Vol 18 (40) ◽  
pp. 27754-27760 ◽  
Author(s):  
Ryoya Kobayashi ◽  
Toshihiro Takashima ◽  
Satoshi Tanigawa ◽  
Shugo Takeuchi ◽  
Bunsho Ohtani ◽  
...  

We have prepared a solid-state heterojunction photocatalyst, which can split pure water under red light up to 740 nm.


Sign in / Sign up

Export Citation Format

Share Document