scholarly journals Numerical study of active mixing over a dynamic flow field in a T-jets mixer—Induction of resonance

2016 ◽  
Vol 106 ◽  
pp. 74-91 ◽  
Author(s):  
Ertugrul Erkoç ◽  
Cláudio P. Fonte ◽  
Madalena M. Dias ◽  
José Carlos B. Lopes ◽  
Ricardo J. Santos
2006 ◽  
Vol 11 (4) ◽  
pp. 331-343 ◽  
Author(s):  
M. S. Alam ◽  
M. M. Rahman ◽  
M. A. Samad

The problem of combined free-forced convection and mass transfer flow over a vertical porous flat plate, in presence of heat generation and thermaldiffusion, is studied numerically. The non-linear partial differential equations and their boundary conditions, describing the problem under consideration, are transformed into a system of ordinary differential equations by using usual similarity transformations. This system is solved numerically by applying Nachtsheim-Swigert shooting iteration technique together with Runge-Kutta sixth order integration scheme. The effects of suction parameter, heat generation parameter and Soret number are examined on the flow field of a hydrogen-air mixture as a non-chemical reacting fluid pair. The analysis of the obtained results showed that the flow field is significantly influenced by these parameters.


Author(s):  
Ana Marta Souza ◽  
Antônio César Valadares de Oliveira ◽  
Enrico Temporim Ribeiro ◽  
Francisco Souza ◽  
Marcelo Colombo Chiari

Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1198
Author(s):  
Pauline H. M. Janssen ◽  
Sébastien Depaifve ◽  
Aurélien Neveu ◽  
Filip Francqui ◽  
Bastiaan H. J. Dickhoff

With the emergence of quality by design in the pharmaceutical industry, it becomes imperative to gain a deeper mechanistic understanding of factors impacting the flow of a formulation into tableting dies. Many flow characterization techniques are present, but so far only a few have shown to mimic the die filling process successfully. One of the challenges in mimicking the die filling process is the impact of rheological powder behavior as a result of differences in flow field in the feeding frame. In the current study, the rheological behavior was investigated for a wide range of excipients with a wide range of material properties. A new parameter for rheological behavior was introduced, which is a measure for the change in dynamic cohesive index upon changes in flow field. Particle size distribution was identified as a main contributing factor to the rheological behavior of powders. The presence of fines between larger particles turned out to reduce the rheological index, which the authors explain by improved particle separation at more dynamic flow fields. This study also revealed that obtained insights on rheological behavior can be used to optimize agitator settings in a tableting machine.


ACS Omega ◽  
2021 ◽  
Vol 6 (34) ◽  
pp. 21892-21899
Author(s):  
Yixiang Wang ◽  
Lei Wang ◽  
Xianhang Ji ◽  
Yulu Zhou ◽  
Mingge Wu

Author(s):  
Dian Li ◽  
Xiaomin Liu ◽  
Lei Wang ◽  
Fujia Hu ◽  
Guang Xi

Previous publications have summarized that three special morphological structures of owl wing could reduce aerodynamic noise under low Reynolds number flows effectively. However, the coupling noise-reduction mechanism of bionic airfoil with trailing-edge serrations is poorly understood. Furthermore, while the bionic airfoil extracted from natural owl wing shows remarkable noise-reduction characteristics, the shape of the owl-based airfoils reconstructed by different researchers has some differences, which leads to diversity in the potential noise-reduction mechanisms. In this article, three kinds of owl-based airfoils with trailing-edge serrations are investigated to reveal the potential noise-reduction mechanisms, and a clean airfoil based on barn owl is utilized as a reference to make a comparison. The instantaneous flow field and sound field around the three-dimensional serrated airfoils are simulated by using incompressible large eddy simulation coupled with the FW-H equation. The results of unsteady flow field show that the flow field of Owl B exhibits stronger and wider-scale turbulent velocity fluctuation than that of other airfoils, which may be the potential reason for the greater noise generation of Owl B. The scale and magnitude of alternating mean convective velocity distribution dominates the noise-reduction effect of trailing-edge serrations. The noise-reduction characteristic of Owl C outperforms that of Barn owl, which suggests that the trailing-edge serrations can suppress vortex shedding noise of flow field effectively. The trailing-edge serrations mainly suppress the low-frequency noise of the airfoil. The trailing-edge serration can suppress turbulent noise by weakening pressure fluctuation.


Author(s):  
A Koichi Hayashi ◽  
Kodai Shimomura ◽  
Nobuyuki Tsuboi ◽  
Kohei Ozawa ◽  
Nicolas H. Jourdaine ◽  
...  
Keyword(s):  

Author(s):  
Sina Pooladsanj ◽  
Mehran Tadjfar

A numerical study has been performed to evaluate the aerodynamics coefficients of a winglet in the range of Reynolds numbers below 30,000. In this study some parameters on winglet design have been considered. The effect of winglet-tip airfoil thickness has been investigated on aerodynamics coefficients. In order to explore this effect, two different airfoils (NACA0002 and NACA0012) were employed at the winglet-tip. The influence of varying the winglet connection angle to the wing on aerodynamics coefficients and flow field characteristics in the vortex flow zone such as; circulation magnitude and vorticity magnitude in the vortex core have been studied. Six connection angles including 20°, 30°, 40°, 50°, 60° and 70° have been studied. Negative values of these angles have also been considered. In addition, the effect of changing wing aspect ratio on aerodynamics coefficients has been investigated. To solve the flow field around the studied geometry a fully structured grid was used which consists of 84 blocks.


Sign in / Sign up

Export Citation Format

Share Document