scholarly journals HYPERBARIC CHAMBER LEADING TO DECOMPRESSION SICKNESS IN PATIENTS WITH COVID-19

CHEST Journal ◽  
2021 ◽  
Vol 160 (4) ◽  
pp. A1925
Author(s):  
Saad Muhammad Amin ◽  
Harsh Mehta
1998 ◽  
Vol 275 (3) ◽  
pp. R677-R682 ◽  
Author(s):  
Susan R. Kayar ◽  
Terry L. Miller ◽  
Meyer J. Wolin ◽  
Eugenia O. Aukhert ◽  
Milton J. Axley ◽  
...  

We present a method for reducing the risk of decompression sickness (DCS) in rats exposed to high pressures of H2. Suspensions of the human colonic microbe Methanobrevibacter smithii were introduced via a colonic cannula into the large intestines of the rats. While the rats breathed H2in a hyperbaric chamber, the microbe metabolized some of the H2diffusing into the intestine, converting H2and CO2to methane and water. Rate of release of methane from the rats, which was monitored by gas chromatography, varied with chamber H2pressure. This rate was higher during decompression than during compression, suggesting that during decompression the microbe was metabolizing H2stored in the rats’ tissues. Rats treated with M. smithii had a 25% (5 of 20) incidence of DCS, which was significantly lower ( P < 0.01) than the 56% (28 of 50) incidence of untreated controls, brought on by a standardized compression and decompression sequence. Thus using a microbe in the intestine to remove an estimated 5% of the body burden of H2reduced DCS risk by more than one-half. This method of biochemical decompression may potentially facilitate human diving.


2019 ◽  
pp. 685-693
Author(s):  
Richard E. Moon ◽  
◽  
Simon Mitchell ◽  
◽  

Rationale Decompression sickness (DCS, “bends”) is caused by formation of bubbles in tissues and/or blood when the sum of dissolved gas pressures exceeds ambient pressure (supersaturation) [1]. This may occur when ambient pressure is reduced during any of the following: • ascent from a dive; • depressurization of a hyperbaric chamber; • rapid ascent to altitude in an unpressurised aircraft or hypobaric chamber; • loss of cabin pressure in an aircraft [2] and • during space walks.


2009 ◽  
Vol 106 (4) ◽  
pp. 1459-1463 ◽  
Author(s):  
R. T. Mahon ◽  
H. M. Dainer ◽  
M. G. Gibellato ◽  
S. E. Soutiere

Disabled submarine (DISSUB) survivors are expected to achieve saturation with inert gas. However, rescue procedures may not accommodate staged decompression, raising the potential for severe decompression sickness (DCS). Alternatives to standard recompression therapy are needed. It has been demonstrated in humans that isobaric oxygen “prebreathing” (OPB) can accelerate decompression in a DISSUB scenario. In-70 kg swine saturated at 2.82 atm absolute (ATA), 1 h of OPB eliminated death and reduced severe DCS. We hypothesized that even shorter periods (<1 h) of OPB before no-stop decompression from saturation at 2.82 ATA could reduce the incidence of DCS in a large animal model. Catheterized Yorkshire swine (68.8 ± 1.7 kg) in individual Plexiglas boxes within a large animal hyperbaric chamber were compressed to 2.82 ATA for 22 h. Following saturation and while still at depth, breathing gas was switched to >95% O2 for 45 min (OPB45), 15 min (OPB15), or 5 min (OPB05) of OPB, or no OPB (control). The chamber was then decompressed without stops (0.91 ATA/min). Observers then entered the chamber and recorded signs of DCS for 2 h. All OPB periods significantly reduced the risk of developing type II DCS. OPB45 eliminated severe DCS. Controls had a 2.5 times greater risk of developing type II DCS than OPB05 ( P = 0.016). OPB45 and OPB15 significantly reduced type I DCS compared with controls. These results support the potential of OPB as an alternative to staged decompression and that OPB could be expected to improve outcome in a DISSUB rescue scenario.


2021 ◽  
pp. 119-126
Author(s):  
Hayden W Hess ◽  
◽  
Courtney E Wheelock ◽  
Erika St. James ◽  
Jocelyn L Stooks ◽  
...  

Exposure to a reduction in ambient pressure such as in high-altitude climbing, flying in aircrafts, and decompression from underwater diving results in circulating vascular gas bubbles (i.e., venous gas emboli [VGE]). Incidence and severity of VGE, in part, can objectively quantify decompression stress and risk of decompression sickness (DCS) which is typically mitigated by adherence to decompression schedules. However, dives conducted at altitude challenge recommendations for decompression schedules which are limited to exposures of 10,000 feet in the U.S. Navy Diving Manual (Rev. 7). Therefore, in an ancillary analysis within a larger study, we assessed the evolution of VGE for two hours post-dive using echocardiography following simulated altitude dives at 12,000 feet. Ten divers completed two dives to 66 fsw (equivalent to 110 fsw at sea level by the Cross correction method) for 30 minutes in a hyperbaric chamber. All dives were completed following a 60-minute exposure at 12,000 feet. Following the dive, the chamber was decompressed back to altitude for two hours. Echocardiograph measurements were performed every 20 minutes post-dive. Bubbles were counted and graded using the Germonpré and Eftedal and Brubakk method, respectively. No diver presented with symptoms of DCS following the dive or two hours post-dive at altitude. Despite inter- and intra-diver variability of VGE grade following the dives, the majority (11/20 dives) presented a peak VGE Grade 0, three VGE Grade 1, one VGE Grade 2, four VGE Grade 3, and one VGE Grade 4. Using the Cross correction method for a 66-fsw dive at 12,000 feet of altitude resulted in a relatively low decompression stress and no cases of DCS.


2007 ◽  
Vol 102 (4) ◽  
pp. 1324-1328 ◽  
Author(s):  
R. Arieli ◽  
P. Svidovsky ◽  
A. Abramovich

Trimix (a mixture of helium, nitrogen, and oxygen) has been used in deep diving to reduce the risk of high-pressure nervous syndrome during compression and the time required for decompression at the end of the dive. There is no specific recompression treatment for decompression sickness (DCS) resulting from trimix diving. Our purpose was to validate a rat model of DCS on decompression from a trimix dive and to compare recompression treatment with oxygen and heliox (helium-oxygen). Rats were exposed to trimix in a hyperbaric chamber and tested for DCS while walking in a rotating wheel. We first established the experimental model, and then studied the effect of hyperbaric treatment on DCS: either hyperbaric oxygen (HBO) (1 h, 280 kPa oxygen) or heliox-HBO (0.5 h, 405 kPa heliox 50%-50% followed by 0.5 h, 280 kPa oxygen). Exposure to trimix was conducted at 1,110 kPa for 30 min, with a decompression rate of 100 kPa/min. Death and most DCS symptoms occurred during the 30-min period of walking. In contrast to humans, no permanent disability was found in the rats. Rats with a body mass of 100–150 g suffered no DCS. The risk of DCS in rats weighing 200–350 g increased linearly with body mass. Twenty-four hours after decompression, death rate was 40% in the control animals and zero in those treated immediately with HBO. When treatment was delayed by 5 min, death rate was 25 and 20% with HBO and heliox, respectively.


2021 ◽  
Vol 92 (1) ◽  
pp. 47-49
Author(s):  
Matthew J. Petruso ◽  
Samuel M. Philbrick

BACKGROUND: While Fairbanks, AK, USA, is a remote location with significant constraints on medical resources and specialty care, a small U.S. Air Force clinic was able to provide a pilot with definitive care for neurological decompression sickness.CASE REPORT: A 31-yr-old female patient presented to her flight surgeon in Anchorage, AK, USA, with migrating polyarthropathy and headaches 48 h after a flight which included planned aircraft decompression for high altitude low opening (HALO) jump operations. In order to get definitive treatment in a hyperbaric chamber, the patient typically would have to be flown to Seattle, WA, USA. This transfer of care would cost the Air Force approximately 150,000 and may have led to more complicated disease. Fortunately, Eielson Air Force Base (AFB) in Fairbanks had previously procured a Hyperlite hyperbaric chamber specifically for this situation. After consultation with a hyperbaric specialist, the team decided that the most appropriate course of action was to transfer her by car 6 h north from Anchorage to Fairbanks. On initiation of the Hart treatment table, she experienced immediate reduction in joint pain with a reversal of neurological symptoms.DISCUSSION: This patients care could not have been done without the procurement of a hyperbaric chamber. This case demonstrates the utility and necessity for these capabilities at more facilities that manage significant flying operations. Military bases should ensure that hyperbaric treatment capabilities are available within a close proximity.Petruso MJ, Philbrick SM. Definitive treatment of neurological decompression sickness in a resource limited location. Aerosp Med Hum Perform. 2021; 92(1):4749.


2013 ◽  
Vol 305 (7) ◽  
pp. R748-R758 ◽  
Author(s):  
Yan Bai ◽  
Nandakumar Selvaraj ◽  
Kyle Petersen ◽  
Richard Mahon ◽  
William A. Cronin ◽  
...  

Methods to predict onset of cardiopulmonary (CP) decompression sickness (DCS) would be of great benefit to clinicians caring for stricken divers. Principal dynamic mode (PDM) analysis of the electrocardiogram has been shown to provide accurate separation of the sympathetic and parasympathetic tone dynamics. Nine swine (Sus scrofa) underwent a 15-h saturation dive at 184 kPa (60 ft. of saltwater) in a hyperbaric chamber followed by dropout decompression, whereas six swine, used as a control, underwent a 15-h saturation dive at 15 kPa (5 ft. of saltwater). Noninvasive electrocardiograms were recorded throughout the experiment and autonomic nervous system dynamics were evaluated by heart rate series analysis using power spectral density (PSD) and PDM methods. We observed a significant increase in the sympathetic and parasympathetic tones using the PDM method on average 20 min before DCS onset following a sudden induction of decompression. Parasympathetic activities remained elevated, but the sympathetic modulation was significantly reduced at onset of cutis and CP DCS signs, as reported by a trained observer. Similar nonsignificant observations occurred during PSD analysis. PDM observations contrast with previous work showing that neurological DCS resulted in a >50% reduction in both sympathetic and parasympathetic tone. Therefore, tracking dynamics of the parasympathetic tones via the PDM method may allow discrimination between CP DCS and neurological DCS, and this significant increase in parasympathetic tone has potential use as a marker for early diagnosis of CP DCS.


2020 ◽  
Vol 91 (10) ◽  
pp. 806-811
Author(s):  
Laëtitia Corgie ◽  
Nicolas Huiban ◽  
Jean-Michel Pontier ◽  
François-Xavier Brocq ◽  
Jean-François Boulard ◽  
...  

BACKGROUND: Scuba diving activities expose divers to serious accidents, which can require early hospitalization. Helicopters are used for early evacuation. On the French Mediterranean coast, rescue is made offshore mainly by a French Navy Dauphin or at a landing zone by an emergency unit EC 135 helicopter.METHODS: We retrospectively analyzed diving accidents evacuated by helicopter on the French Mediterranean coast from 1 September 2014 to 31 August 2016. We gathered data at the Center for Hyperbaric Medicine and Diving Expertise (SMHEP) of the Sainte-Anne Military Hospital (Toulon, France), the 35 F squadron at Hyres (France) Naval Air Station, and the SAMU 83 emergency unit (Toulon, France).RESULTS: A total of 23 diving accidents were evacuated offshore by Dauphin helicopter and 23 at a landing zone on the coast by EC 135 helicopter without hoist. Immersion pulmonary edema (IPE) accounted for one-third of the total diving accidents evacuated by helicopter with identified causes. It was responsible for at least half of the deaths at the dive place. A quarter of the rescued IPE victims died because of early cardiac arrest.DISCUSSION: Helicopter evacuation is indicated when vital prognosis (IPE and pulmonary overpressure in particular) or neurological functional prognosis (decompression sickness) is of concern. IPE is the primary etiology in patients with serious dive injuries that are life-threatening and who will benefit from helicopter evacuation. A non-invasive ventilation device with inspiratory support and positive expiratory pressure must be used, in particular for IPE.Corgie L, Huiban N, Pontier J-M, Brocq F-X, Boulard J-F, Monteil M. Diving accident evacuations by helicopter and immersion pulmonary edema. Aerosp Med Hum Perform. 2020; 91(10):806811.


Sign in / Sign up

Export Citation Format

Share Document