Nanometric cutting mechanism of silicon carbide

CIRP Annals ◽  
2021 ◽  
Author(s):  
Jinshi Wang ◽  
Fengzhou Fang
2019 ◽  
Vol 71 (5) ◽  
pp. 686-691 ◽  
Author(s):  
Lei Liu ◽  
Zongwei Xu ◽  
Dongyu Tian ◽  
Alexander Hartmaier ◽  
Xichun Luo ◽  
...  

Purpose This paper aims to reveal the mechanism for improving ductile machinability of 3C-silicon carbide (SiC) and associated cutting mechanism in stress-assisted nanometric cutting. Design/methodology/approach Molecular dynamics simulation of nano-cutting 3C-SiC is carried out in this paper. The following two scenarios are considered: normal nanometric cutting of 3C-SiC; and stress-assisted nanometric cutting of 3C-SiC for comparison. Chip formation, phase transformation, dislocation activities and shear strain during nanometric cutting are analyzed. Findings Negative rake angle can produce necessary hydrostatic stress to achieve ductile removal by the extrusion in ductile regime machining. In ductile-brittle transition, deformation mechanism of 3C-SiC is combination of plastic deformation dominated by dislocation activities and localization of shear deformation. When cutting depth is greater than 10 nm, material removal is mainly achieved by shear. Stress-assisted machining can lead to better quality of machined surface. However, there is a threshold for the applied stress to fully gain advantages offered by stress-assisted machining. Stress-assisted machining further enhances plastic deformation ability through the active dislocations’ movements. Originality/value This work describes a stress-assisted machining method for improving the surface quality, which could improve 3C-SiC ductile machining ability.


2013 ◽  
Vol 690-693 ◽  
pp. 2559-2562
Author(s):  
Ying Zhu ◽  
Shun He Qi ◽  
Zhi Xiang ◽  
Ling Ling Xie

Molecular dynamics model of the polysilicon material under the micro/nanoscale is established by using molecular dynamics method, make variety of the typical defects distribute to the polysilicon model reasonable and relax the simulation model, obtain the system potential energy curves in the relaxation process and the atomic location figure after the relaxation. Conduct molecular dynamics simulation of nanometric cutting process relying on the development of simulation program, get instant atom position image and draw the cutting force curve. Discusses the typical defects impact on the polycrystalline silicon nanometric cutting process, those mainly include cutting force changes in the cutting process, potential energy changes and processed surface quality etc.


2011 ◽  
Vol 6 (1) ◽  
pp. 589 ◽  
Author(s):  
Saurav Goel ◽  
Xichun Luo ◽  
Robert L Reuben ◽  
Waleed Rashid

2011 ◽  
Vol 393-395 ◽  
pp. 1475-1478
Author(s):  
Hong Guo

A three-dimensional model of molecular dynamics (MD) was employed to study the nanometric cutting mechanism of monocrystalline silicon. The model included the utilization of the Morse potential function to simulate the interatomic force between the workpiece and the tool, and the Tersoff potential function between silicon atoms. Amorphous phase transformation and chip volume change are observed by analyses of the snapshots of the MD simulation of the nanometric cutting process, energy and cutting forces. Dislocations and elastic recovery in the deformed region around the tool do not appear. Cutting forces initiate the amorphous phase transformation, and thrust forces play an important role in driving the further transformation development. Nanometric cutting mechanism of monocrystalline silicon is not the plastic deformation involving the generation and propagation of dislocations, but deformation via amorphous phase transformation.


Author(s):  
R. J. Lauf

Fuel particles for the High-Temperature Gas-Cooled Reactor (HTGR) contain a layer of pyrolytic silicon carbide to act as a miniature pressure vessel and primary fission product barrier. Optimization of the SiC with respect to fuel performance involves four areas of study: (a) characterization of as-deposited SiC coatings; (b) thermodynamics and kinetics of chemical reactions between SiC and fission products; (c) irradiation behavior of SiC in the absence of fission products; and (d) combined effects of irradiation and fission products. This paper reports the behavior of SiC deposited on inert microspheres and irradiated to fast neutron fluences typical of HTGR fuel at end-of-life.


Author(s):  
K. B. Alexander ◽  
P. F. Becher

The presence of interfacial films at the whisker-matrix interface can significantly influence the fracture toughness of ceramic composites. The film may alter the interface debonding process though changes in either the interfacial fracture energy or the residual stress at the interface. In addition, the films may affect the whisker pullout process through the frictional sliding coefficients or the extent of mechanical interlocking of the interface due to the whisker surface topography.Composites containing ACMC silicon carbide whiskers (SiCw) which had been coated with 5-10 nm of carbon and Tokai whiskers coated with 2 nm of carbon have been examined. High resolution electron microscopy (HREM) images of the interface were obtained with a JEOL 4000EX electron microscope. The whisker geometry used for HREM imaging is described in Reference 2. High spatial resolution (< 2-nm-diameter probe) parallel-collection electron energy loss spectroscopy (PEELS) measurements were obtained with a Philips EM400T/FEG microscope equipped with a Gatan Model 666 spectrometer.


Author(s):  
L. A. Giannuzzi ◽  
C. A. Lewinsohn ◽  
C. E. Bakis ◽  
R. E. Tressler

The SCS-6 SiC fiber is a 142 μm diameter fiber consisting of four distinct regions of βSiC. These SiC regions vary in excess carbon content ranging from 10 a/o down to 5 a/o in the SiC1 through SiC3 region. The SiC4 region is stoichiometric. The SiC sub-grains in all regions grow radially outward from the carbon core of the fiber during the chemical vapor deposition processing of these fibers. In general, the sub-grain width changes from 50nm to 250nm while maintaining an aspect ratio of ~10:1 from the SiC1 through the SiC4 regions. In addition, the SiC shows a <110> texture, i.e., the {111} planes lie ±15° along the fiber axes. Previous has shown that the SCS-6 fiber (as well as the SCS-9 and the developmental SCS-50 μm fiber) undergoes primary creep (i.e., the creep rate constantly decreases as a function of time) throughout the lifetime of the creep test.


1980 ◽  
Vol 41 (C4) ◽  
pp. C4-111-C4-112 ◽  
Author(s):  
V. V. Makarov ◽  
T. Tuomi ◽  
K. Naukkarinen ◽  
M. Luomajärvi ◽  
M. Riihonen

Sign in / Sign up

Export Citation Format

Share Document