An extended BRST-anti-BRST invariant description of Maxwell–Chern–Simons gauge theory coupled to scalar field in superspace

2020 ◽  
Vol 65 ◽  
pp. 314-324
Author(s):  
Jialiang Dai
1992 ◽  
Vol 70 (5) ◽  
pp. 301-304 ◽  
Author(s):  
D. G. C. McKeon

We investigate a three-dimensional gauge theory modeled on Chern–Simons theory. The Lagrangian is most compactly written in terms of a two-index tensor that can be decomposed into fields with spins zero, one, and two. These all mix under the gauge transformation. The background-field method of quantization is used in conjunction with operator regularization to compute the real part of the two-point function for the scalar field.


2017 ◽  
Vol 32 (13) ◽  
pp. 1750064 ◽  
Author(s):  
Subir Mukhopadhyay ◽  
Chandrima Paul

We study SU(2)[Formula: see text]×[Formula: see text]U(1) gauge theory with Chern–Simons term, coupled to scalar field in adjoint, in a probe approximation by ignoring back reaction on metric. Considering a simple ansatz for non-Abelian gauge field with helical structure, we find it admits s-wave and p-wave phases along with their coexistence. We study free energies for different phases along with those for p-wave phases for different values of pitch and frequency dependence of optical conductivities below critical temperature.


2018 ◽  
Vol 33 (01) ◽  
pp. 1850002 ◽  
Author(s):  
Subir Mukhopadhyay ◽  
Chandrima Paul

We study [Formula: see text] gauge theory with Chern–Simons term, coupled to scalar field in adjoint, in Einstein–Gauss–Bonnet gravity. We explore phases of holographic superconductor in terms of the condensates and free energies in the background of AdS black hole and AdS soliton. In the case of black hole, we find with increasing strength of higher curvature terms, transition temperature decreases. For AdS soliton, the critical value of chemical potential increases as the higher curvature terms dominate.


1991 ◽  
Vol 06 (39) ◽  
pp. 3591-3600 ◽  
Author(s):  
HIROSI OOGURI ◽  
NAOKI SASAKURA

It is shown that, in the three-dimensional lattice gravity defined by Ponzano and Regge, the space of physical states is isomorphic to the space of gauge-invariant functions on the moduli space of flat SU(2) connections over a two-dimensional surface, which gives physical states in the ISO(3) Chern–Simons gauge theory. To prove this, we employ the q-analogue of this model defined by Turaev and Viro as a regularization to sum over states. A recent work by Turaev suggests that the q-analogue model itself may be related to an Euclidean gravity with a cosmological constant proportional to 1/k2, where q=e2πi/(k+2).


1990 ◽  
Vol 05 (16) ◽  
pp. 1251-1258 ◽  
Author(s):  
NOUREDDINE MOHAMMEDI

We find the relationship between the Jackiw-Teitelboim model of two-dimensional gravity and the SL (2, R) induced gravity. These are shown to be related to a two-dimensional gauge theory obtained by dimensionally reducing the Chern-Simons action of the 2+1 dimensional gravity. We present an explicit solution to the equations of motion of the auxiliary field of the Jackiw-Teitelboim model in the light-cone gauge. A renormalization of the cosmological constant is also given.


1993 ◽  
Vol 08 (04) ◽  
pp. 723-752 ◽  
Author(s):  
A.P. BALACHANDRAN ◽  
P. TEOTONIO-SOBRINHO

It is known that the 3D Chern–Simons interaction describes the scaling limit of a quantum Hall system and predicts edge currents in a sample with boundary, the currents generating a chiral U(1) Kac-Moody algebra. It is no doubt also recognized that, in a somewhat similar way, the 4D BF interaction (with B a two-form, dB the dual *j of the electromagnetic current, and F the electromagnetic field form) describes the scaling limit of a superconductor. We show in this paper that there are edge excitations in this model as well for manifolds with boundaries. They are the modes of a scalar field with invariance under the group of diffeomorphisms (diffeos) of the bounding spatial two-manifold. Not all diffeos of this group seem implementable by operators in quantum theory, the implementable group being a subgroup of volume-preserving diffeos. The BF system in this manner can lead to the w1+∞ algebra and its variants. Lagrangians for fields on the bounding manifold which account for the edge observables on quantization are also presented. They are the analogs of the (1+1)-dimensional massless scalar field Lagrangian describing the edge modes of an Abelian Chern-Simons theory with a disk as the spatial manifold. We argue that the addition of “Maxwell” terms constructed from F∧*F and dB∧*dB does not affect the edge states, and that the augmented Lagrangian has an infinite number of conserved charges—the aforementioned scalar field modes—localized at the edges. This Lagrangian is known to describe London equations and a massive vector field. A (3+1)-dimensional generalization of the Hall effect involving vortices coupled to B is also proposed.


2011 ◽  
Vol 26 (37) ◽  
pp. 2813-2821
Author(s):  
PATRICIO GAETE

We consider the static quantum potential for a gauge theory which includes a light massive vector field interacting with the familiar U (1) QED photon via a Chern–Simons-like coupling, by using the gauge-invariant, but path-dependent, variables formalism. An exactly screening phase is then obtained, which displays a marked departure of a qualitative nature from massive axionic electrodynamics. The above static potential profile is similar to that encountered in axionic electrodynamics consisting of a massless axion-like field, as well as to that encountered in the coupling between the familiar U (1) QED photon and a second massive gauge field living in the so-called U (1)h hidden-sector, inside a superconducting box.


Author(s):  
SERGEI GUKOV ◽  
EMIL MARTINEC ◽  
GREGORY MOORE ◽  
ANDREW STROMINGER
Keyword(s):  

2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Shao-Jun Zhang

AbstractWe study massive scalar field perturbation on Kerr black holes in dynamical Chern–Simons gravity by performing a $$(2+1)$$ ( 2 + 1 ) -dimensional simulation. Object pictures of the wave dynamics in time domain are obtained. The tachyonic instability is found to always occur for any nonzero black hole spin and any scalar field mass as long as the coupling constant exceeds a critical value. The presence of the mass term suppresses or even quench the instability. The quantitative dependence of the onset of the tachyonic instability on the coupling constant, the scalar field mass and the black hole spin is given numerically.


Sign in / Sign up

Export Citation Format

Share Document